An Extension of the Model of Inequity Aversion by Fehr and Schmidt

Stefania Ottone and Ferruccio Ponzano
An Extension to the Model of Inequity Aversion by Fehr and Schmidt

Stefania Ottone
Ferruccio Ponzano

Department of Public Policy and Public Choice – Polis
University of Eastern Piedmont “Amedeo Avogadro”
Via Cavour 84 – 15100 Alessandria - Italy
Phone: +39 0131 283715
Fax :+39 0131 283704
E-mail: stefania.ottone@sp.unipmn.it
ferruccio.ponzano@sp.unipmn.it

Abstract. The aim of this paper is to improve on the model by Fehr and Schmidt (1999) by developing a non-linear model (that leads to interior rather than corner solutions) and by taking into account that different levels of income imply different reactions of fair-minded people. We suggest to modify the inequity-aversion utility function proposed by Fehr and Schmidt by taking into account not only the difference between players’ payoffs, but also their absolute value. This allows for a non-linear utility function where different stakes lead to different unique optimal interior solutions.

JEL classification: A13, C72, C91, D63, D64
Keywords: Fairness, Inequity-aversion
Introduction

The inequity-aversion model by Fehr and Schmidt (FS onwards) represents one of the most important theoretical contributions to fairness studies. Its relevance is due to its simplicity and to the consistency of theoretical solutions with experimental evidence in different games. However, too much emphasis has been assigned to the second positive feature. In fact, the FS model fails to explain two relevant experimental results: the significant percentage of interior solutions in some distributions games (i.e. ultimatum game, Güth et al., 1982; and dictator game, Forsythe et al., 1994) and the relevance of different monetary stakes in players’ decisional process (i.e. Slonim and Roth, 1998; Munier and Zaharia, 2002).

The aim of this paper is to improve on the model by FS by developing a non-linear model (that leads to interior rather than corner solutions) and by taking into account that different levels of income imply different reactions of fair-minded people.
1. The model

The inequity-aversion model by FS, in a two-player game, states that:

\[ U_i(x_i, x_j) = x_i - \alpha_i \max\{x_j - x_i, 0\} - \beta_i \max\{x_i - x_j, 0\}, \quad i \neq j \]  

(1)

where:
- \( x_{i,j} \) is the payoff of player \( i \) (or \( j \))
- \( \alpha_i \) is a parameter of envy
- \( \beta_i \) is a parameter of altruism

\( 0 < \beta_i < 1 \) and \( \alpha_i \geq \beta_i \) since the disutility that comes from a position of disadvantage is higher than the disutility that comes from a position of advantage;

\( \partial U_i/\partial x_j \geq 0 \) iff \( x_i \geq x_j \) since the marginal utility of an increase in others’ income is positive if and only if they have a lower level of income with respect to subject \( i \).

A problem with this model is that, when applied, for example, to the Ultimatum Game and to the Dictator Game, it provides corner solutions depending on the value of \( \beta \). In particular, when \( \beta_i \in [0, 0.5) \), player \( i \) always maximizes her own payoff choosing not to transfer any sum to player \( j \). On the other hand, when \( \beta_i \in (0.5, 1) \), player \( i \) always maximizes her own payoff choosing to share equally the total amount of money with player \( j \). Finally, when \( \beta_i \) is equal to 0.5, player \( i \) is indifferent between any distribution of the total payoff \( S \) where \( x_i \in [S/2, S] \). In other words, this model is unable to clearly explain players’ optimal interior choices, that are the most common results (for a survey, Fehr and Camerer, 2003).

The assumption of a linear utility function, which awards simplicity to the model, is the reason why interior solutions are not well defined. Kohler (2003) argues that ‘an increasing degree of difference aversion resolves the shortcoming that only two “focal” equilibria exist’.\(^1\) However, his model holds only when the initial endowment \( S \) is normalized to 1. Consequently, this does not allow any analysis concerning different levels of endowment, which is our main concern. Moreover, if we consider the actual value of the initial endowment, the (for example) quadratic difference becomes extremely high with high numbers and even an almost selfish Proposer will decide to transfer half of the sum.

To reach our goal, we suggest to modify the initial inequity-aversion utility function (1) by taking into account not only the difference between player \( i \) ‘s and player \( j \)’s payoffs, but also their

---

\(^1\) Kohler, 2003, p.7.
absolute value. This allows for a non-linear utility function where different stakes lead to different unique optimal interior solutions. Our utility function is:

$$V(x_i, x_j) = f(x_i) - \alpha_i f(x_j - x_i, x_i) - \beta_i f(x_j - x_i, x_j)$$ (2)

We assume that the second term of the previous function is increasing with respect to the difference and decreasing with respect to the value of $x_i$. At the same time, the third term is increasing with respect to the difference and decreasing with respect to the value of $x_j$.

We consider the following form of the utility function presented in equation (2) to analyse the implications of the model:

$$U_i(x_i, x_j) = x_i - \alpha_i \max \left\{ \frac{x_j - x_i}{\gamma_i x_i + 1}, 0 \right\} - \beta_i \max \left\{ \frac{x_i - x_j}{\sigma_i x_i + 1}, 0 \right\}, \quad i \neq j.$$ (3)

Let’s re-write equation (3) as follows:

$$U_i = \begin{cases} x_i - \alpha_i \left( \frac{x_j - x_i}{\gamma_i x_i + 1} \right) & x_j > x_i \\ x_i - \beta_i \left( \frac{x_i - x_j}{\sigma_i x_i + 1} \right) & x_j \geq x_i \end{cases}$$ (4)

In equation (4), we consider the utility of player $i$ when her payoff is lower than player $j$’s payoff. We assume that the level of $x_i$ influences the disutility due to the payoffs’ difference. In particular, the higher the level of $x_i$, the lower the discomfort due to the difference. However, we assume that subjects’ concern for their income as a weight of the difference is not equal among the population. This is represented by the parameter $\gamma_i \in [0,1]$. When $\gamma_i = 1$, player $i$’s income has the same relevance as the difference. When $\gamma_i = 0$, player $i$’s income has no relevance and the model corresponds to the model by FS. Obviously, for a given value of $\alpha_i$, $x_i$ and $x_j$, the higher $\gamma_i$, the higher the level of the utility.

The lowest level of equation (4) is reached when $x_i = 0$. In this case:

---

2 It comes from common sense that the discomfort due to inequality decreases as the income of the worse-off player increases. Consider, for example, two subjects in two different scenarios. In the first case, player A has 10 euro and player B 0 euro. In the second case player A has 1000 euro and player B 990 euro. Player A will suffer more in the first situation.
\[ U_i = -\alpha_i(x_j) \] 

and the higher \( \alpha_i \) the higher the disutility (see Figure 1).

**Figure 1.**

*Envy function: an example*

![Envy function graph](image)

where:

\[
\begin{align*}
\alpha_i &= 1 \\
\gamma_i &= 0.3 \\
x &= x_i \in [0,10] \\
y &= x_j \in [10,20]
\end{align*}
\]

It is interesting to notice that the corner points of our function \((x_i = 0, \ x_i = x_j)\) correspond to the corner points of FS’s function (see Figure 2).³

³ For simplicity, we consider a typical ultimatum or dictator scenario, where the sum of the payoffs is constant.
In equation (5), we consider the utility of player $i$ when her payoff is higher than player $j$’s payoff. As in FS, player $i$’s utility is negatively influenced by the payoffs difference. However, this difference has a decreasing ‘weight’ with respect to $x_j$.

The lowest level of Figure 1 is reached when $x_j$ is equal to 0. In this case:

$$U_i = (1 - \beta_i)x_i$$

(7)

This means that when $x_j = 0$, player $i$’s utility is a weighted function of $x_i$. The higher $\beta_i$, the lower the utility (see Figure 3).
Figure 3.
Altruism function: an example

where:
\[ \beta_i = 0.6 \]
\[ \sigma_i = 0.3 \]
\[ x = x_i \in [10,20] \]
\[ y = x_j \in [0,10] \]

Also in this case, the corner points of our function \( (x_i = x_j, x_j = 0) \) correspond to the corner points of FS’s function, whatever the level of \( \sigma_i \) (see Figure 4).
As for FS, \( \alpha_i \geq \beta_i \) and \( 0 \leq \beta_i < 1 \).

Consider now the first and the second derivatives of equation (4) with respect to \( x_i \):

\[
\frac{\partial U_i}{\partial x_i} = 1 + \frac{\alpha_i}{\gamma_i x_i + 1} + \frac{\alpha_i (x_j - x_i) y_j}{(\gamma_i x_i + 1)^2} > 0
\]

(8)

\[
\frac{\partial^2 U_i}{\partial x_i^2} = -2 \frac{\alpha_i \gamma_i}{(\gamma_i x_i + 1)^2} - \frac{2\alpha_i (x_j - x_i) y_j^2}{(\gamma_i x_i + 1)^3} < 0
\]

(9)
The marginal utility of \( x_i \) is positive and decreasing, while in FS it is positive and constant. Obviously, as in FS, the first derivative of \( i \)'s utility function with respect to \( x_j \) is negative:

\[
\frac{\partial U_i}{\partial x_j} = -\frac{\alpha_i}{\gamma_i x_i + 1} < 0
\]  

(10)

Consider now the first derivative of equation (5) with respect to \( x_i \) and the first and second derivatives with respect to \( x_j \):

\[
\frac{\partial U_i}{\partial x_i} = 1 - \frac{\beta_i}{\sigma_i x_i + 1} > 0
\]  

(11)

\[
\frac{\partial U_i}{\partial x_j} = \frac{\beta_i}{\sigma_i x_j + 1} + \frac{\beta_i (x_i - x_j) \sigma_i}{(\sigma_i x_j + 1)^2} > 0
\]  

(12)

\[
\frac{\partial^2 U_i}{\partial x_j^2} = -2 \frac{\beta_i \sigma_i}{(\sigma_i x_j + 1)^2} - \frac{2 \beta_i (x_i - x_j) \sigma_i^2}{(\sigma_i x_j + 1)^3} < 0
\]  

(13)

The implication is that both a higher value of \( x_i \) and a higher value of \( x_j \) lead to a higher value of \( i \)'s utility function.
2. Application to Dictator and Ultimatum Games

Consider a Dictator Game where the total sum to be divided between the Dictator and the Receiver is equal to $k$. In this game where the only active player is the Dictator, the utility function to be considered is her utility function. Since we are not analysing a mini Dictator Game (see for example, Abbink, Sadrieh and Zamir, 2004) but a traditional Dictator Game, we consider only the part of the utility function where the Dictator has a payoff that is equal or higher than the payoff of the Receiver. Consequently, the sum that the Dictator transfers to the Receiver is equal to $s \in [0, \frac{k}{2}]$. We can rewrite equation (5) as follows:

$$U_i = k - s - \beta_i \left( \frac{k - 2s}{\sigma_i s + 1} \right)$$  \hspace{1cm} (14)

In equilibrium:

$$s^* = \begin{cases} 
\frac{k}{2} & \text{if } \beta_i \geq \frac{1}{2} \left( 1 + \frac{1}{2} \sigma_i k \right) \\
-1 + \sqrt{\beta_i \sigma_i k + 2} & \text{if } \frac{1}{2 + \sigma_i k} < \beta_i < \frac{1}{2} \left( 1 + \frac{1}{2} \sigma_i k \right) \\
0 & \text{if } \beta_i \leq \frac{1}{2 + \sigma_i k}
\end{cases}$$

In FS the value of $\beta_i$ determines the optimal transfer to the Receiver. In this case, $\beta_i$, $\sigma_i$ and $k$ determine the optimal value of $s$. However, this modified version of their model allows unique optimal interior solutions, given the value of the parameters.
As an example, consider the case where $k = 10$, $\sigma_i = 0.1$:

$$s^* = \begin{cases} 5 & \text{if } \beta_i \geq 0.75 \\ -1 + \sqrt{3\beta_i} & \text{if } 0.33 < \beta_i < 0.75 \\ 0 & \text{if } \beta_i \leq 0.33 \end{cases}$$

Let’s now consider a **Generalized Dictator Game** where the Dictators decides to transfer a sum ($s$) to the Receiver who receives $ms$, with $m \geq 1$. Now $s \in [0, \frac{k}{m+1}]$ and:

$$U_i = k - s - \beta_i \left( \frac{k - s - ms}{\sigma_i ms + 1} \right) \quad (15)$$

In equilibrium:

$$s^* = \begin{cases} k/(m+1) & \text{if } \beta_i \geq l \\ -1 + \sqrt{\beta_i m + \beta_i \sigma_i km + \beta_i} & \text{if } h < \beta_i < l \\ 0 & \text{if } \beta_i \leq h \end{cases}$$

where:

$$h = \frac{1}{m+1 + \sigma_i km}$$

$$l = \frac{m+1 + \sigma_i km}{(m+1)^2}$$

Finally, consider now an **Ultimatum Game**, where:
- player $i$ is the Proposer;
- player $j$ is the Responder;
- $s$ is the offer of the Proposer;
- $k$ is the sum to be divided.
Since the Proposer will never offer to the Responder more than a half of the total sum $k$, the utility function of player $j$ is:

$$U_j(s) = s - \alpha_j \left[ \frac{k - 2s}{\gamma_j s + 1} \right], \quad i \neq j. \quad (16)$$

The Responder will accept any sum that provides a positive value of equation (16), since the utility of her rejection of the Proposer’s offer provides a level of utility equal to 0. The Responder will reject any offer:

$$s < s'(\alpha_j, k) = \frac{1}{2} \left[ \frac{-1}{\gamma_i} - 2\alpha_i + \sqrt{1 + 4\alpha_i + 4\alpha_i^2 + 4\alpha_i \gamma_i k} \right] \quad (17)$$

The value of $s'$ depends positively both on the level of $\alpha_j$ and on the value of $k$.

The utility function of the Proposer is:

$$U_i = k - s - \beta_i \left[ \frac{k - 2s}{\sigma_i s + 1} \right] \quad (18)$$

In equilibrium, the Proposer who knows the type ($\alpha_j$) of the Responder, will offer:

$$s^* = \begin{cases} 
\frac{k}{2} & \text{if } \beta_i \geq \frac{1}{2} \left( 1 + \frac{1}{2} \sigma_j k \right) \\
-1 + \sqrt{\sigma_i \beta_i k + 2} & \text{if } q < \beta_i < \frac{1}{2} \left( 1 + \frac{1}{2} \sigma_j k \right) \\
s'(\alpha_j, k) & \text{if } \beta_i \leq q 
\end{cases}$$

where:

$$q = \frac{1}{2} \left( \gamma^2_j + 4\alpha_j \gamma^2_j - \gamma^2_j r - 2\gamma_j \sigma_j + 4\alpha^2_j \gamma^2_j \right) \sigma_j^2(2 + \gamma_j k) +$$

$$- \frac{1}{2} \left( 2\alpha_j \gamma^2_j r - 4\alpha_j \gamma_j \sigma_j + 2\alpha_j \gamma^2_j \sigma_j k + 2\gamma_j \sigma_j r + 2\sigma_j^2 \right) \sigma_j^2(2 + \gamma_j k)$$
with:

\[ r = \sqrt{1 + 4\alpha_i + 4\alpha_i^2 + 4\alpha_i \gamma / k} \]

For instance, if \( k = 10, \alpha_j = 1, \gamma_j = \sigma_i = 0.1 \):

\[ s^* = \begin{cases} 
5 & \text{if } \beta_i \geq 0.75 \\
-\frac{1 + \sqrt{3\beta_i}}{0.1} & \text{if } 0.565 < \beta_i < 0.75 \\
3.02 & \text{if } \beta_i \leq 0.565
\end{cases} \]

Our modified version of the model by FS is consistent with the empirical evidence. The results obtained by Slonim and Roth (1998) and by Munier and Zaharia (2002) show that the higher the sum to be divided (\( k \)), the lower in percentage the minimum accepted transfer and, at the same time, the optimal transfer (\( s \)) to the Responder. We provide an example to show that this is the case in this modified version of the model by FS, but not in their original model.

When \( k = 10, \gamma = 0.1 \) and \( \sigma = 0.2 \):

\[ U_i = \begin{cases} 
x_i - \alpha_i \left( \frac{10 - 2x_i}{0.1x_i + 1} \right) & x_i < 5 \\
x_i - \beta_i \left( \frac{2x_i - 10}{0.2(10 - x_i) + 1} \right) & x_i \geq 5
\end{cases} \]

For \( \alpha_i = 1, \beta_i = 0.5 \), the function is depicted in Figure 5.
where:

\[ x = 1 - s \]
\[ y = U_i \]

If player \( i \) is a Proposer, the value of \((1 - s)\) that maximizes her utility function is \(7.9\). If she is a Responder, the minimum accepted transfer \((s)\) is \(3.03\).

When \( k = 100, \gamma = 0.1 \) and \( \sigma = 0.2 \):

\[
U_i = \begin{cases} 
  x_i - \alpha_i \left( \frac{100 - 2x_i}{\gamma x_i + 1} \right) & x_i < 50 \\
  x_i - \beta_i \left( \frac{2x_i - 100}{\sigma (100 - x_i) + 1} \right) & x_i \geq 50 
\end{cases}
\]

For \( \alpha_i = 1 \) and \( \beta_i = 0.5 \), the function is depicted in Figure 6.
where:

\[ x = 1 - s \]
\[ y = U_i \]

If player \( i \) is a Proposer, the value of \((1 - s)\) that maximizes her utility function is 88.4. If she is a Responder, the minimum accepted transfer \((s)\) is 20.

If we compare the results, we can notice that when \( k \) is higher, a Proposer maximizes her utility by keeping a higher percentage of the total sum (88.4% against 79%) and a Responder’s utility goes to 0 with a lower percentage of the total sum (20% against 30%).

\[ ^4 \text{When} \quad k = 10, \quad \sigma_i = 0.2, \quad \alpha_i = 1, \quad \beta_i = 0.9, \quad \text{the value of} \quad 1-s \quad \text{that maximizes the Proposer’s utility function is now about 5.5. When} \quad k = 10, \quad \sigma_i = 0.2, \quad \alpha_i = 1, \quad \beta_i = 0.2, \quad \text{the value of} \quad 1-s \quad \text{that maximizes the Proposer’s utility function is 10. When} \quad k = 10, \quad \gamma_i = 0.1, \quad \alpha_i = 2, \quad \beta_i = 0.5, \quad \text{the value of} \quad s \quad \text{that makes the Responder’s utility function equal to 0 is about 3.7. This suggests that a higher level of altruism implies a lower level of} \quad 1-s \quad \text{to maximize the Proposer’s utility. On the other hand, a higher level of envy implies that a higher level of} \quad s \quad \text{is required for the Responder to have a positive utility.} \]
3. Application to Public Good Games

In this section we analyse how fair-minded people behave in a Public Good Game. There are \( n \geq 2 \) players who have to decide how to invest their initial endowment \( y \). They can either keep the whole sum or invest \((g_i)\) part of it (or the total sum) in a public good whose return is \( a \in \left(\frac{1}{n}, 1\right)\).

Player \( i \)'s monetary payoff is:

\[
x_i(g_1, \ldots, g_n) = y - g_i + a \sum_{j \neq i} g_j
\]

(19)

Since \( a < 1 \), any contribution implies a loss of \((1-a)\). Consequently, the selfish \textit{Homo Oeconomicus} always finds it profitable not to contribute.

However, an interesting feature of our model is that fair-minded people may decide to cooperate. Without loss of generality we consider player 1 as the reference player, and we compare her utility when she decides not to contribute \((g_1=0)\) to her utility when she contributes \((g_1>0)\).

\[
U(g_1 = 0) = y - a \sum_{j=2}^{n} g_j - \frac{\beta_1}{n-1} \sum_{j=2}^{n} \frac{g_j}{\sigma_1(y - g_j + a \sum_{j=2}^{n} g_j) + 1}
\]

(20)

\[
U(g_1 > 0) = y - (1 - a)g_1 + a \sum_{j=2}^{n} g_j - \frac{\beta_1}{n-1} \sum_{j=2}^{n} \frac{g_j - g_1}{\sigma_1(y - g_1 + ag_1 + a \sum_{j=2}^{n} g_j) + 1} +
\]

\[
- \frac{\alpha_1}{n-1} \sum_{j=2}^{k} \frac{g_1 - g_j}{\gamma_1(y - g_1 + ag_1 + a \sum_{j=2}^{n} g_j) + 1}
\]

(21)

If we compare (20) with (21), we obtain respectively the loss (22) and the gain (23) due to contribution:

\[
(1-a)g_1 + \frac{\alpha_1}{n-1} \sum_{j=2}^{k} \frac{g_1 - g_j}{\gamma_1(y - g_1 + ag_1 + a \sum_{j=2}^{n} g_j) + 1}
\]

(22)
When (23) is greater than (22), player 1 will contribute.

Consider now the effect of $\alpha_i$, $\beta_i$, and $a$ on the loss and the gain. When $\alpha_i$ increases, the loss increases and it becomes less profitable for player 1 to cooperate. The opposite happens when $\beta_i$ increases: the gain increases and it becomes more profitable for player 1 to cooperate. The effect of an increase of $a$ is less obvious. While the loss (equation 22) decreases, the gain (equation 23) increases. However, the final effect on contribution is positive. This means that the decrease of the loss is higher than the decrease of the gain.

Consider now a situation where the subjects can punish players who do not contribute to the provision of the public good. The payoff of player $i$ is:

$$x_i = y - g_i + ag_i + a\sum_{j=2}^{n} g_j - z\sum_{j=1}^{n} p_{ji} - c\sum_{j=1}^{n} p_{ij}$$

(24)

where:

$c = \text{cost of each unit of punishment}$

$z = \text{yield of each unit of punishment}$

$p_{ji} = \text{units of punishment given by player } j \text{ to player } i$

$p_{ij} = \text{units of punishment given by player } i \text{ to player } j$

Without loss of generality, we analyse a 3-player game in order to avoid complex computations. Player 1 is a ‘cooperative enforcer’\(^5\) (she cooperates and she punishes a non-cooperative player), player 2 does not contribute to the provision of the public good and player 3 is a cooperative subject (she cooperates, but she does not punish non cooperators). We assume that $g_1 = g_3$ and $g_2 = 0$.

The payoff of player 1 when she decides to punish player 2 is:

\(^5\) Fehr and Schmidt, 1999, p.19.
\[ x_i = y - g_i + 2ag_i - cp_{i2} \quad (25) \]

and her utility is:

\[ U_1 = x_i - \frac{\alpha_i}{2} \left( \frac{g_i + cp_{i2} - \gamma p_{i2}}{\gamma x_i + 1} + \frac{cp_{i2}}{\gamma x_i + 1} \right) \quad (26) \]

on the other hand, the payoff of player 1 when she decides not to punish player 2 is:

\[ x_i = y - g_i + 2ag_i \quad (27) \]

and her utility is:

\[ U_1 = x_i - \frac{\alpha_i}{2} \frac{g_i}{\gamma x_i + 1} \quad (28) \]

it is profitable for player 1 to punish player 2 when (26) is higher than (28). This means that:

\[ cp_{i2} < -\frac{\alpha_i}{2} \left( \frac{2cp_{i2} - \gamma p_{i2}}{\gamma(y - g_i + 2ag_i - cp_{i2})} \right) \quad (29) \]

and:

\[ 0 < p_{i2} < \frac{1}{2} \frac{2cy_i(y - g_i + 2ag_i) + \alpha_i(2c - z)}{c^2\gamma_i} \quad (30) \]

under the following constraints:

\[ p_{i2} \leq \frac{y - g_i(2a - 1)}{c} \quad (31) \]

\[ p_{i2} \leq \frac{y + 2ag_i}{z} \quad (32) \]
\[ p_{12} \leq \frac{g_1}{z - c} \]  

The first two constraints mean that the player 1 cannot pay for punishment more than her income and punishment cannot provide a negative income to player 2. The third constraint means that player 1’s payoff after punishment cannot be higher than player’s 2 payoff.

Consider equation (30) again. The value of punishment assigned by player 1 to player 2 \( p_{12} \) increases as the cost of punishment \( c \) decreases, the rent of punishment \( z \) decreases and envy of player 1 \( \alpha_1 \) increases.
4. Application to Gift Exchange Games

This game describes the principal-agent relation in an incomplete contracts contest. In the first stage, the Employer (the principal) offers a wage $w \in [w, \bar{w}]$ (where $w \geq 0$) to the Worker (the agent). The Worker decides whether to accept or not. If she rejects, both players receive nothing. In the second stage, the Worker decides her effort $e \in [\underline{e}, \bar{e}]$ (where $\underline{e} > 0$). The payoff of the Employer and of the Worker are respectively $x_E$ and $x_W$:

\[ x_E = ve - w \]

\[ x_W = w - c(e) \]

where:
- $w$ = wage proposed by the Employer
- $v$ = marginal value of effort for the Employer
- $e$ = effort chosen by the Worker
- $c(e)$ = effort cost for the Worker

We assume a positive income for both players when $e = \underline{e}$. This means that:

\[ w \leq ve \quad \text{or} \quad v \geq \frac{w}{\underline{e}} \]

and

\[ w \geq c(e) \]

Consider now a situation where $x_E > x_W$ at any feasible effort level. A fair-minded worker will always choose $e = \underline{e}$ when this effort level provides a positive utility. When $U_w \leq 0$ at any level of $e$, the Worker will never accept to work for the Employer.

When $x_W > x_E$ at $\underline{e}$, the Worker may decide to increase her effort to reduce the difference between her payoff and the payoff of the Employer. In this case, the utility of the Worker is:

\[ U_w = w - c(e) - \beta \frac{(2w - c(e) - ve)}{\sigma(e - w) + 1} \]
If we assume $c(e) = e$:

$$U_w = w - e - \beta_i \frac{(2w - e - ve)}{\sigma_i(vw - w) + 1} \quad (37)$$

and the optimal level of effort for the Worker is:

$$e^* = \frac{\sigma_i,w - 1 + \sqrt{\beta_i(1 + \sigma_i,vw + v - \sigma_i,w)}}{\sigma_i,v} \quad (38)$$

When $\beta_i$ and $w$ increase $e^*$ increases as well. This result is consistent with the experimental evidence. In Fehr et al.(1993), a higher wage ($w$) corresponds to a higher effort ($e^*$).
5. Application to Trust Games

It is a two-stage game with two participants (the Investor and the Trustee). In the first stage the Investor can invest the whole initial endowment $S$ or a part of it by sending any amount $y$ (between 0 and $S$) to the Trustee. The experimenter triples the amount sent to the Trustee such that she receives $3y$. In the second stage the Trustee can send part of the investment (any amount between 0 and $3y$) back to the Investor.

The Utility of the Trustee is:

$$U_T = s + 3y - z - \beta_T \left( \frac{s + 3y - z - s + y - z}{\sigma_T (s - y + z) + 1} \right)$$

or:

$$U_T = s + 3y - z - \beta_T \left( \frac{4y - 2z}{\sigma_T (s - y + z) + 1} \right)$$  \hspace{1cm} (39)

where:
- $y = \text{sum sent to the Trustee by the Investor}$
- $z = \text{sum sent back to the Investor by the Trustee}$
- $s = \text{each player’s initial endowment}$

Starting from (39), the optimal value of $z$ is:

$$z^* = \frac{\sigma_T (y - s) - 1 + \sqrt{2 \beta_T (\sigma_T s + \sigma_T y + 1)}}{\sigma_T}$$  \hspace{1cm} (40)

This result means that the sum the Trustee sends back to the Investor depends positively on the sum received by the Investor and on the Trustee’s degree of altruism. It can explain the results obtained by Berg et al. (1995): when $y$ is equal to 0.5$S$, $z$ is a bit less than $y$. Moreover, $z$ increases as $y$ increases, as a sort of positive reciprocity between the Investor and the Trustee.

---

6 When $s = 10$, $y = 5$, $\sigma_T = 0.1$, $\beta_T = 0.8$, $z^* = 5$. 
Summary and conclusions

Fehr and Schmidt assume that fair-minded people exist and they provide a model that explains extreme behavior. In this paper we provide a non-linear utility function of fair-minded people to explain interior solutions. In particular, we assume that the disutility due to unfair distribution of outcomes is influenced not only by the difference between the payoffs but also by the absolute value of the payoff of each player. This hypothesis looks plausible and allows to explain the behavior of players involved in Ultimatum Games. In addition, the model is consistent with the empirical evidence also in other games (i.e. Public Good Game, Dictator Game and Gift Exchange Game, Trust Game).
References


<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>n.58*</td>
<td>Stefania Ottone and Ferruccio Ponzano, <em>An extension of the model of Inequity Aversion by Fehr and Schmidt</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.57*</td>
<td>Stefania Ottone, <em>Transfers and altruistic punishment in Solomon's Game experiments</em></td>
</tr>
<tr>
<td>2005</td>
<td>n. 56°</td>
<td>Carla Marchese and Marcello Montefiori, <em>Mean voting rule and strategical behavior: an experiment</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.55**</td>
<td>Francesco Ingravalle, <em>La sussidiarietà nei trattati e nelle istituzioni politiche dell'UE</em></td>
</tr>
<tr>
<td>2005</td>
<td>n. 54*</td>
<td>Rosella Levaggi and Marcello Montefiori, <em>It takes three to tango: soft budget constraint and cream skimming in the hospital care market</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.53*</td>
<td>Ferruccio Ponzano, <em>Competition among different levels of government: the re-election problem.</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.52*</td>
<td>Andrea Sisto and Roberto Zanola, <em>Rationally addicted to cinema and TV? An empirical investigation of Italian consumers</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.51*</td>
<td>Luigi Bernardi and Angela Fraschini, <em>Tax system and tax reforms in India</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.50*</td>
<td>Ferruccio Ponzano, <em>Optimal provision of public goods under imperfect intergovernmental competition.</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.49*</td>
<td>F.Amisano A.Cassone, <em>Proprieta' intellettuale e mercati: il ruolo della tecnologia e conseguenze microeconomiche</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.48*</td>
<td>Tapan Mitra and Fabio Privileggi, <em>Cantor Type Attractors in Stochastic Growth Models</em></td>
</tr>
<tr>
<td>2005</td>
<td>n.47°</td>
<td>Guido Ortona, <em>Voting on the Electoral System: an Experiment</em></td>
</tr>
<tr>
<td>2004</td>
<td>n.45*</td>
<td>Daniele Bondonio, <em>Do business incentives increase employment in declining areas? Mean impacts versus impacts by degrees of economic distress.</em></td>
</tr>
<tr>
<td>2004</td>
<td>n.44**</td>
<td>Joerg Luther, <em>La valorizzazione del Museo provinciale della battaglia di Marengo: un parere di diritto pubblico</em></td>
</tr>
</tbody>
</table>
2004 n.43* Ferruccio Ponzano, *The allocation of the income tax among different levels of government: a theoretical solution*

2004 n.42* Albert Breton e Angela Fraschini, *Intergovernmental equalization grants: some fundamental principles*

2004 n.41* Andrea Sisto, Roberto Zanola, *Rational Addiction to Cinema? A Dynamic Panel Analisis of European Countries*

2004 n.40** Francesco Ingravalle, *Stato, groβe Politik ed Europa nel pensiero politico di F. W. Nietzsche*

2003 n.39ε Marie Edith Bissey, Claudia Canegallo, Guido Ortona and Francesco Scacciati, *Competition vs. cooperation. An experimental inquiry*

2003 n.38ε Marie-Edith Bissey, Mauro Carini, Guido Ortona, *ALEX3: a simulation program to compare electoral systems*

2003 n.37* Cinzia Di Novi, *Regolazione dei prezzi o razionamento: l’efficacia dei due sistemi di allocazione nella fornitura di risorse scarse a coloro che ne hanno maggiore necessita’*


2003 n. 35* Marcello Montefiori, *Hotelling competition on quality in the health care market.*


2002 n. 33* Mario Ferrero, *Radicalization as a reaction to failure: an economic model of islamic extremism*

2002 n. 32ε Guido Ortona, *Choosing the electoral system – why not simply the best one?*

2002 n. 31** Silvano Belligni, Francesco Ingravalle, Guido Ortona, Pasquale Pasquino, Michel Senellart, *Trasformazioni della politica. Contributi al seminario di Teoria politica*


2002 n. 29* Marcello Montefiori, *Libertà di scelta e contratti prospettici: l’asimmetria informativa nel mercato delle cure sanitarie ospedaliere*

2002 n. 28* Daniele Bondonio, *Evaluating the Employment Impact of Business Incentive Programs in EU Disadvantaged Areas. A case from Northern Italy*

2002 n. 26** Guido Franzinetti, *Le Elezioni Galiziane al Reichsrat di Vienna, 1907-1911*

2002 n. 25c Marie-Edith Bissey and Guido Ortona, *A simulative frame to study the integration of defectors in a cooperative setting*

2001 n. 24* Ferruccio Ponzano, *Efficiency wages and endogenous supervision technology*

2001 n. 23* Alberto Cassone and Carla Marchese, *Should the death tax die? And should it leave an inheritance?*


2001 n. 21* Claudia Canegallo, *Una valutazione delle carriere dei giovani lavoratori atipici: la fedeltà aziendale premia?*

2001 n. 20* Stefania Ottone, *L'altruismo: atteggiamento irrazionale, strategia vincente o amore per il prossimo?*

2001 n. 19* Stefania Ravazzi, *La lettura contemporanea del cosiddetto dibattito fra Hobbes e Hume*

2001 n. 18* Alberto Cassone e Carla Marchese, *Einaudi e i servizi pubblici, ovvero come contrastare i monopolisti predoni e la burocrazia corrotta*


2000 n. 16* Guido Ortona, *On the Xenophobia of non-discriminated Ethnic Minorities*

2000 n. 15* Marilena Locatelli-Biey and Roberto Zanola, *The Market for Sculptures: An Adjacent Year Regression Index*

2000 n. 14* Daniele Bondonio, *Metodi per la valutazione degli aiuti alle imprese con specifico target territoriale*

2000 n. 13* Roberto Zanola, *Public goods versus publicly provided private goods in a two-class economy*


2000 n. 11** Silvano Belligni, *Magistrati e politici nella crisi italiana. Democrazia dei guardiani e neopopulismo*


1999 n. 9* Mario Ferrero, *A model of the political enterprise*

1999 n. 8* Claudia Canegallo, *Funzionamento del mercato del lavoro in presenza di
informazione asimmetrica

1999 n. 7** Silvano Belligni, Corruzione, malcostume amministrativo e strategie etiche. Il ruolo dei codici.
<table>
<thead>
<tr>
<th>Year</th>
<th>Issue</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>5</td>
<td>Luigi Montrucchio and Fabio Privileggi</td>
<td>On Fragility of Bubbles in Equilibrium Asset Pricing Models of Lucas-Type</td>
</tr>
<tr>
<td>1999</td>
<td>4</td>
<td>Guido Ortona</td>
<td>A weighted-voting electoral system that performs quite well.</td>
</tr>
<tr>
<td>1999</td>
<td>3</td>
<td>Mario Poma</td>
<td>Benefici economici e ambientali dei diritti di inquinamento: il caso della riduzione dell’acido cromico dai reflui industriali.</td>
</tr>
<tr>
<td>1999</td>
<td>2</td>
<td>Guido Ortona</td>
<td>Una politica di emergenza contro la disoccupazione semplice, efficace equasi efficiente.</td>
</tr>
<tr>
<td>1998</td>
<td>1</td>
<td>Fabio Privileggi, Carla Marchese and Alberto Cassone</td>
<td>Risk Attitudes and the Shift of Liability from the Principal to the Agent</td>
</tr>
</tbody>
</table>
Department of Public Policy and Public Choice “Polis”

The Department develops and encourages research in fields such as:
- theory of individual and collective choice;
- economic approaches to political systems;
- theory of public policy;
- public policy analysis (with reference to environment, health care, work, family, culture, etc.);
- experiments in economics and the social sciences;
- quantitative methods applied to economics and the social sciences;
- game theory;
- studies on social attitudes and preferences;
- political philosophy and political theory;
- history of political thought.

The Department has regular members and off-site collaborators from other private or public organizations.
Instructions to Authors

Please ensure that the final version of your manuscript conforms to the requirements listed below:

The manuscript should be typewritten single-faced and double-spaced with wide margins.

Include an abstract of no more than 100 words.

Classify your article according to the Journal of Economic Literature classification system.

Keep footnotes to a minimum and number them consecutively throughout the manuscript with superscript Arabic numerals. Acknowledgements and information on grants received can be given in a first footnote (indicated by an asterisk, not included in the consecutive numbering).

Ensure that references to publications appearing in the text are given as follows:

COASE (1992a; 1992b, ch. 4) has also criticized this bias....

and

“...the market has an even more shadowy role than the firm” (COASE 1988, 7).

List the complete references alphabetically as follows:

Periodicals:

Monographs:

Contributions to collective works:

Working papers: