The program for the simulation of electoral systems ALEX4.1: what it does and how to use it

Marie-Edith Bissey and Guido Ortona
The program for the simulation of electoral systems ALEX4.1: what it does and how to use it

Marie-Edith Bissey and Guido Ortona

1. Introduction.

This paper illustrates ALEX4.1, the 2007 version of the program of simulation of electoral systems developed at ALEX, the Laboratory for Experimental and Simulative Economics of the Università del Piemonte Orientale at Alessandria, Italy. The main features of the program have been described with reference to a previous version in Bissey, Carini and Ortona, 2004; the paper may be freely downloaded from the site of the journal where it has been published, or in its working paper version from the site http://polis.unipmn.it/. The organization of this paper is, consequently, rather unusual. The next section presents only the very basic traits of the simulation program, as most details and theoretical considerations may be read in the quoted (and easy-to-find) reference. Sections 3 and 4 are the most important: they illustrate the novelties of ALEX4.1 with respect to previous versions. Section 5 is very short, as it contains only the instructions for downloading the program, and some caveats regarding its use. The core of the paper is a large appendix that contains the readme file of the package ALEX4.1. Actually, this paper should be considered a handbook for the use of ALEX4.1.

2. The program of simulation of electoral systems ALEX4.1: basic traits.

The program refers to an one-Chamber Parliament, from now on "the Parliament". The inputs, required to the user, are:

a) The size of the Parliament;
b) The number of voters;
c) The number of parties (which coincides with the number of candidates in every constituency for non proportional systems);
d) The nation-wide share of votes of each party;
e) The probability that the second preferred party is next to the first preferred, and the probability that it is a second next party. These probabilities are employed to produce the full ordering of preferences for parties of every voter, through a random-number device;
f) The (optional) concentration of some parties in some constituencies;
g) The (optional) location of each party on the left-right axis. If this input is not provided, the program assumes equidistance among parties. Note that the (at least ordinal) left-to-right location is necessary for the generation of the full ordering of preferences. This means that the program assumes (implicitly) a one-dimension spatiality of the policy. An interesting (but probably quite demanding) improvement could be a two-dimension location of the parties.

Note that these inputs may be imported from a database (or stored and modified), see the appendix for details.

The outputs are:

a) The distribution of the seats among parties;
b) Some indexes of representativeness and governability, described in next section. For the indexes of governability to be computed, the user must first decide the governing majority.

The processing capabilities of the program have not been fully assessed yet, also because they depend mostly on the computer employed. However, a normal PC may safely manage a Parliament with 100 seats, 200 voters for each constituency and 10 parties. The electoral system more demanding in terms of memory employed is the Single Transferable Vote, as it may be expected; its
exclusion increases considerably the speed of the computing. Note that the program works with "real", albeit virtual, individual voters, and not with aggregate shares.

The electoral systems so far included in the program are:

a) One-district proportionality;
b) Multi district proportionality;
c) Threshold proportionality;
d) Plurality;
e) Run-off Majority;
f) Mixed-member system;
g) Mixed-member system with the exclusion of the votes employed in the plurality from the proportional assignment;
h) Borda Count;
i) Condorcet;
j) Single transferable vote;
m) VAP system, a suggested new system currently under scrutiny. Broadly speaking, it assigns more votes (but not more seats) in the Parliament to the majority coalition, to increase the governability. In experimental settings it usually performs very well. A description may be found in the appendix and in Bissey, Carini and Ortona, 2004; a broader discussion is in Ortona, 2000.
Proportional systems may employ D'Hondt, Sainte-Lague, Hare and Imperiali quotas, and STV may employ Droop, NB and Hare quotas. The addition of new systems is a relatively easy task, see the appendix. The approval voting has not (yet) been included, because former experiments showed that it is usually dominated by Borda and Condorcet. All non-proportional systems allow for strategic voting of the voters; this is a new feature, and we will illustrate how it works in section 4.

Finally, the governability index may be corrected to take into account the weight of factions inside the parties. This also is a feature introduced in the last version, and we will discuss it in section 4 too.

3. The program of simulation of electoral systems ALEX4.1: new indexes.

The previous version, ALEX3, contained only an index of representativeness and an index of governability. The index of representativeness, call it r_1, is defined as follows:

$$r_{1,j} = \frac{n}{\sum_{i=1}^{n}|S_{j,i} - S_{pp,i}|} \times \frac{\sum_{i=1}^{n}|S_{u,i} - S_{pp,i}|}{\sum_{i=1}^{n}|S_{u,i} - S_{pp,i}|}$$

where j refers to the electoral system, n is the number of parties, $S_{j,i}$ is the number of seats obtained by party i under system j, $S_{pp,i}$ is the number of seats obtained by party i under one-district perfect proportionality rule (PPR), and $S_{u,i}$ is the number of seats obtained by party i if all the seats go to the largest party.

The loss of representativeness incurred by party i is the (absolute) difference between the seats it would get under PPR and those actually obtained. Summing this loss across all the parties we obtain the total loss of R (first sum). In order to normalize (0 to 1) this value, we divide it by the total possible loss of R. This maximum is obtained when the relative majority party takes all the seats (second sum). This way we got a loss of representativeness index, normalized in the range 0-1.

1 We consider a system to be dominated by another one when the indexes of both representativeness and governability are lower in the first case.

2 The value of $S_{u,i}$ is the total number of seats for the largest party, and 0 for all the others. If several parties are the largest ones ex aequo, we take the one which is the largest under most systems in the case considered.
Subtracting it from 1 we transform it into a *representativeness* index. For instance, if in the Parliament there are 100 seats and three parties, A, B, C, with 20, 30 and 50 seats respectively under PPR and 10, 20 and 70 under system X, the value of the second sum is 80, that of the first is 40, and the value of \(r_1 \) is 0.5.

As for the index of governability, \(g_1 \), many scholars assume that governability is inversely related to the number of decision makers, supposed to be that of parties in the governing coalition. There is a lot of debate on this topic. Some authors (including one of the authors of this paper) do not agree: see for instance Lijphart, 1994, or Farrell, 2001. However, this is the only general argument to prefer non-proportional systems; hence we accept it, to make the program useful for those who share this opinion, avoiding a broader discussion that would clearly go beyond the purpose of this paper. More precisely, we assume that governability depends mostly on the number of *crucial* parties of the governing coalition, i.e. of parties *that destroy the majority if they withdraw*, \(m \); and secondarily on the *share of seats of the majority*, \(f \). Hence, we add lexicographically the f-component, \(g_f \), to the m-component, \(g_m \). The range of \(g_f \) is the difference between successive values of \(g_m \): the term in \(m \) defines a lower and an upper boundary, and the term in \(f \) specifies the value of the index between them.

The limits defined by \(g_m \) are simply \(1/m \) (upper boundary) and \(1/(m+1) \) (lower boundary). For instance, if the Government is supported by just one party, \(g_1 \) is comprised between 0.5 and 1; if it supported by two (or by three and more, but with only two large enough to destroy the majority if they withdraw) \(g_1 \) is comprised between 0.333 and 0.5, and so on. Note that the addition of new parties produces smaller and smaller decreases in \(g_m \), as it should be. The figure to be added to the lower boundary, \(g_f \), depends on the lead of the majority coalition, according to the following proportion:

\[
g_f[1/m - 1/(m+1)] = (f-t/2)/(t-t/2)
\]

from which

\[
g_f = [1/m - 1/(m+1)] (f-t/2)/(t/2)
\]

where \(t \) is the total number of seats in the Parliament.

For instance, if there are 100 seats, and the governing majority is made up of one party with 59 MPs, the value of \(g_f \) is 0.09 (9/50*1/2). This value must be added to 0.5, to give a value of \(g_1 \) equal to 0.59. In sum, the formula for \(g_1 \) is:

\[
g_1 = g_m +g_f = 1/(m+1) + [1/m - 1/(m+1)] (f-t/2)/(t/2)
\]

where \(m \) = number of *crucial* parties supporting the Government, \(f \) = number of seats of the majority, \(t \) = total number of seats. The value of \(g \) reaches its maximum, 1, when a party as *all* the seats (i.e. \(m=1 \), and decreases with the increase of \(m \), thus justifying the claim that the range of \(g_1 \) is the interval \((0,1]\).

The version 4.1 keeps these two indexes, but adds a new index of representativeness and two of governability. The additional index of representativeness, \(r_2 \), is introduced for sake of simplicity, and is defined as

\[
r_2 = 1-X/T
\]

3 The discussion of the indexes defined above is mostly quoted from Bissey, Carini and Ortona, 2004.
where X is the overall number of seats obtained in excess with respect to one-district PPR, i.e. with respect to the (slightly rounded) distribution of first preferences, and T is the total number of seats4, 5.

The first additional index of governability, \(g_2\), is also added for sake of simplicity6, as it is easily understandable7. It is given simply by the ratio \(S/N\), where \(S\) is the number of seats and \(N\) the number of parties of the governing coalition. Note that \(r_1\) is highly correlated with \(r_2\), and \(g_1\) with \(g_2\), as results from the backstage inquiries for Ortona, 2006, as may be expected.

The third index of governability, \(g_3\), adds something more relevant, i.e. the consideration of factions within the parties. Its definition is

\[g_{3,j} = \frac{(S/N)(N/P)^a}{P} \]

where \(j\) refers to the electoral system, \(S\) and \(N\) have the same meaning as above, \(P\) is the number of parties of the minimal majority in the one-district proportional system that includes the same parties that form the majority in system \(j\), and \(a\), ranging 0 to 1, is an elasticity parameter to be established by the user. The meaning of \(g_3\) is explained in next section.

4. The program of simulation of electoral systems ALEX4.1: factions and strategic voting.

The main novelties of the version 4.1 are the consideration of factions and the possibility of strategic voting. The factions may be taken into account through the computing of \(g_3\). As we noted above, there are many doubts on the relation between number of governing parties and governability. To our opinion, the weakness of the relationship is mostly due to the fact that the number of parties often does not coincide with that of decisors. Parties may express a solid, unified will: this was for instance the case in the heroic times when the British Labour Party was the voice of strong and clearly oriented workers' Unions. However, they may also be feeble coalitions of parties very poorly inclined to give up their autonomy, forced to unite (in homage to the law of Duverger) in a first-past-the-post election. This, for instance, was the case of Italy in the elections from 1994 to 2001. In other terms, there is a continuous of possibilities, ranging from strong, monolithic parties to no difference with respect to the set of parties running in a perfectly proportional election.

This span is captured by the exponent \(a\) in \(g_3\), ranging 0 to 1. On one extreme, if \(a=0\), \(g_3\) collapses to \(S/N\), i.e. to \(g_2\); on the other, if \(a=1\), \(g_3\) collapses again on \(g_2\), but this time it is evaluated as \(S/P\): the number of parties to be taken into consideration is not that of the system under exam, but that of perfectly proportional representation.

Obviously, \(a\) must be assessed exogenously. We suggest that to try to evaluate it with reference to real cases is a very interesting and challenging research topic, but it is not within the scope of this paper.

Finally, ALEX4.1 introduces the consideration of strategic voting. In previous versions, in plurality and majority systems voters voted sincerely. This is obviously an unrealistic feature: in the real world, most voters whose preferred party has no chance of winning either abstain or cast their votes for the second (third, etc.) preferred party. Actually, no-chance parties often do not even take part in the polls.

For the results of the simulation in plurality and majority, to abstain or to vote for a no-chance party provide the same result. Hence what must be introduced is the possibility for the voter either

4 The number of seats in excess is equal to that of seats in defect; to provide the number of seats misallocated they must by counted only once.

5 The main advantage of \(r_1\) over \(r_1\) is that it may be easily understood by respondents in surveys (for an experiment, see Ortona, 2006).

6 See again Ortona, 2006.

7 It also has been employed in the experiment described in Ortona, 2006.
to vote for a would-be winner or to vote for the preferred party. This is done through a probability, \(p \), that must be entered by the user. If the probability is 0, the voter will remain faithful to its preferred party; if it is 1, it will vote for sure for the largest party of the coalition that party belongs to, also to be defined by the user. If \(0 < p < 1 \), the value of \(p \) is used to produce the choices of every voter, through a random-number device.

We assume (a) that the voter may only choose between its preferred party and the largest party of the coalition, and (b) that \(p \) is inversely related to the distance of the largest party from the preferred party. Consequently, ALEX4.1 computes \(p \) as follows:

\[
p = 1 - kD/100
\]

where \(0 \leq D \leq 100 \) is the distance between the preferred party and the largest party of the coalition\(^8\), \(k \) is a parameter entered by the user, and \(p \) is obviously truncated if necessary. This method for computing \(p \) may look cumbersome, but it incorporates the realistic assumption that the probability of voting for the largest party is not the same for all the voters of the coalition: voters preferring more far-away parties are less likely to switch. In any case, it is easy to compute out that

\[
k = 100(1-p)/D
\]

to deduce the value of \(k \) from a desired value of \(p \).

5. How to download ALEX4.1.

ALEX4.1 may be used for free. It is released under the GNU/GPL license. To obtain it, simply write to the Laboratory of Simulative and Experimental Economics of the Università del Piemonte Orientale at the address labalex@sp.unipmn.it. You will be requested to fulfill some requirements, namely:

a) Not to employ ALEX4.1 for profit;
b) Not to pass it to other users without the permission of the authors;
c) To send to the Laboratory of Simulative and Experimental Economics of the Università del Piemonte Orientale a copy of the report, paper, etc. where you employ the program, and, if the case, the modified version of the program.

Finally, you will employ the program at your own risk - authors are not to be kept responsible for possible mistakes. The program has been tested very accurately, but the possibility of (hopefully minor) mistakes cannot be completely ruled out. If you find one, please let us know.

\(^8\) The whole left-right axis has a length of 100.
Appendix - User guide for ALEX4.1

This appendix contains the file *readme* that accompanies the ALEX4.1 package.
Userguide for ALEX4 (simulation of electoral systems)

Marie-Edith Bissey, Guido Ortona

July 18, 2007

Contents

1 INTRODUCTION .. 3

2 INSTALLATION OF THE PROGRAM 3

3 USING THE PROGRAM 4
 3.1 Starting the program 4
 3.2 The desktop 4
 3.2.1 The File menu 4
 3.2.2 The Edit menu 4
 3.2.3 The Simulations menu 4
 3.3 Creating a parliament from simulated preferences 5

4 DESCRIPTION OF THE PROGRAM 8
 4.1 Voters’ preferences for the parties - when the position on the left/right axis has not been specified 8
 4.2 Voters’ preferences for the parties - when the position on the left/right axis has been specified 10
 4.3 Voters’ preferences for the candidates 10
 4.4 Creating uninominal districts 12
 4.5 Creating plurinominal districts 13
 4.6 The parliaments 14
 4.6.1 One-district Proportionality 14
 4.6.2 Threshold Proportionality 14
 4.6.3 First Past The Post (Plurality) 15
 4.6.4 First Past The Post (Plurality) - with strategic vote ... 15
 4.6.5 Runoff Majority 15
 4.6.6 Mixed Member I 15
 4.6.7 Mixed Member I - with strategic vote 16
 4.6.8 Mixed Member II 16
 4.6.9 Mixed Member II - with strategic vote 16
4.6.10 Borda Criterion .. 16
4.6.11 Condorcet Winner .. 16
4.6.12 VAP System ... 17
4.6.13 Multi-District Proportionality 18
4.6.14 Single Transferable vote 19
4.7 The indexes .. 20
 4.7.1 Representativeness index - 1 20
 4.7.2 Representativeness index - 2 21
 4.7.3 Governability index - 1 21
 4.7.4 Governability index - 2 22
 4.7.5 Governability index - 3 22

5 EXPANDING THE PROGRAM .. 23
 5.1 Adding a new electoral system 23
 5.2 Adding a new index .. 24
 5.3 Adding a new language 25
 5.4 Creating a file of preferences 25
 5.4.1 The least a file must contain 26
 5.4.2 Other contents ... 27
1 INTRODUCTION

The program is designed to compare electoral systems, on the basis of the voters’ preferences for the parties and the candidates (simulated, or from surveys). The user can enter the parameters into the program (distribution of first preferences, size of the districts, etc.), or load them from a file. The program computes the resulting parliament, representativeness indexes and governability indexes according to the chosen electoral system. The program can implement uninominal and plurinominal systems.

The program has been developed using Java version 1.4, and tested on Microsoft Windows systems (2000 and XP). It is freeware, released under the GNU/GPL license.

2 INSTALLATION OF THE PROGRAM

The program is contained in the ALEX4 directory. Unzip it (if necessary) and copy this directory on the computer. (If the directory is copied from a CD, the files it contains may be ‘read-only’, which may prevent the program to function correctly. To remove this, select the directory, click on it with the right button of the mouse, select Properties and de-select read-only, applying the command on all files and subdirectories.)

The program is written in Java, so at least Java Runtime needs to be installed on the computer for it to work. The oldest version of Java required for the program to run correctly is version 1.4.0. Java Runtime can be downloaded from the following URL: http://java.sun.com

In order to be able to launch the program from any directory, it is necessary to include the executable javac in the path. In some cases, you can choose it during the installation of Java. Otherwise you can follow the following steps (Windows 2000 and XP):

- double-click the System icon in the Control Panel
- click on Advanced, and then ENVIRONMENT VARIABLES
- select the PATH variable and click on Modify
- add the following to the existing string

 ;PATH_TO_JAVA/bin

where PATH_TO_JAVA is the path to reach javac on the computer. For instance:

 c:\Program Files\JRE\java\bin
3 USING THE PROGRAM

3.1 Starting the program

There are two ways to start the program:

- Double click on alex4.bat in the ALEX4 directory
- From a MS/DOS window, use the cd command to go to the ALEX4 directory and type: java ALEX4 at the prompt (Remember: Java is case sensitive!).

This starts the program in the default way, which uses at most 64Mb of the computer’s memory. For some simulations with many voters, parties and/or candidates, you may need more memory to run the program. In this case you can use the executables alex4_128.bat and alex4_256.bat which will use 128Mb and 256Mb of memory respectively. Alternatively, you can type at the MSDos prompt: java -Xmx128m ALEX4 to start Java with 128Mb of memory.

3.2 The desktop

When started, ALEX4 opens a window with several menus.

3.2.1 The File menu

This is the main menu of the program, from which the user can ask for new preferences to be simulated, or load voter’s preferences, (for instance saved from a previous simulation, or computed from external sources, see page 25 for a description of how to create a preference files).

From this menu, the user can also save the parliaments, when they have been created.

3.2.2 The Edit menu

ALEX4 was developed with multilingual support. It is possible to change the language used by the program from the Edit menu. The user can also set the current language as the default. At the moment, the program can function in Italian, English and French. See page 25 for instructions on how to add a new language to the program.

3.2.3 The Simulations menu

When the program is first launched, this menu repeats the File menu, allowing to create or to load a simulation of voters’ preferences. It is possible to open or create several simulations at the same time, in order to confront the resulting parliaments.
3.3 Creating a parliament from simulated preferences

NOTE: the program is set up to use the characteristics of its current language. Therefore, if for instance the program’s language is French or Italian, the user will have to use a comma for decimal numbers, whereas if the program’s language is English, a dot will be required. This is independent from the actual language of the computer’s operating system.

- From the File or the Simulations menu, choose Simulate new preferences
- The following parameters can be set in the first window:
 - number of voters in each uninominal district
 - number of uninominal districts
 - number of seats per plurinominal districts (that is the size of plurinominal districts)
 - number of parties
 - probability to choose a first adjacent party (see section 4.1)
 - probability to choose a second adjacent party (see section 4.1)
 - probability to choose the preferred candidate (see section 4.1)

To simulate plurinominal systems, the number of seats per plurinominal districts must be greater than one. Remember to press RETURN to save each new parameter value in the program. Clicking OK, the user sees a confirmation window.

- The next window allows to set up the characteristics of the parties: their name, their share of votes in the population, their position on a left/right axis and whether the party is “major”, i.e. it is concentrated in some districts and with what weight (see section 4.3). Clicking OK, the user sees a confirmation window.

- The program starts creating for each voter his preference ordering for the parties. Then it creates the uninominal districts (by grouping voters), and the plurinominal districts (by grouping uninominal districts) if requested.

- Once the districts and the preferences are created, the user is asked to give a name to the simulation, so that he can identify it in the Simulations menu. Then the program opens a window with the list of the available electoral systems. To see the parliament resulting from a system, the user must click on the button next to its name. If the parameter “number of seats for plurinominal districts” is greater than 1, the plurinominal systems are displayed in the right hand column. If this parameter is equal to 1, only the left hand side column is displayed (uninominal systems).

A window opens with the characteristics of the parliament: number of seats,
Figure 1: Setting up the number of voters, parties, districts and the probabilities

Figure 2: Confirming inserted values

Figure 3: Setting up the characteristics of the parties
Figure 4: Confirming the parameter values inserted for the parties

Figure 5: Starting creating the districts

Figure 6: List of available parliaments
graphical representation, representativeness indexes, and the possibility to create a government and compute the governability indexes. An example of a results window is shown in figure 7.

Some systems need some extra parameters. A dialog window appears when the user clicks on the name of the system to create the parliament. To close the window, click on the X (upper right). From this window, and from the File menu, it is possible to save the characteristics of the parliament. There is no limit on the number of parliament windows that can be opened in the program, therefore it is possible to open a window for each available parliament.

4 DESCRIPTION OF THE PROGRAM

4.1 Voters’ preferences for the parties - when the position on the left/right axis has not been specified

The program uses the following procedure to assign votes to parties: the first \(n_1 \) voters (corresponding to the share of Party 1 in the population) have Party 1 in the first place of their preference order, the next \(n_2 \) voters (corresponding to the share of Party 2 in the population) have Party 2 in the first place of their preference order, etc.

The parties are assumed to be ordered on a left/right scale, with Party 1 representing the far left, and party \(n \) representing the far right. The parties are saved in an array in increasing order of their index, independently of the name given by the user.

Once the first preference of the voter is known, his complete preference order for all parties is created. To do this, the program uses the probabilities defined in the first window: the probability to choose an adjacent party (or \(p_1 \)), and the probability to choose a second adjacent party (or \(p_2 \)). If these probabilities do not sum to 1, the remainder is the probability to choose another party at random.

To sum up, to choose the second party in the voter’s preference order, the program follows these steps:

1. the first preferred party (or the one preferred at the moment) is deleted from the list of available parties and is saved in the first position in the voter’s preference array.

2. to choose the second preferred party, the program chooses randomly with probability \(p_1 \) a party next to the one currently preferred, with probability \(p_2 \) a party second next to the one currently preferred, with probability \(p_3 = 1 - p_1 - p_2 \) another party at random.

Practically, the choice of a party is done through giving each party a range of numbers (from 1 to 100). For instance, if the preferrend party is in the middle of the array of parties, the first party on the left of it is given the numbers from \(S_1 = 50 - (p_1/2) \times 100 \) to 50. The first party on the right of it is given the
Figure 7: Example of results: the One-District Proportional system
numbers from 51 to $D_1 = 50 + (p_1/2) \times 100$. The second party on the left of the preferred party is given the numbers from $S_2 = S_1 - (p_2/2) \times 100$ to S_1. The second party on the right of the preferred party is given the numbers from D_1 to $D_2 = D_1 + (p_2/2) \times 100$. The remaining numbers are given to the other available parties. Then a number between 1 and 100 is chosen randomly. The party chosen to be second in the voter’s preference order is the one corresponding to this random number. This party become the party currently preferred.

For the rest of the preference order, the program uses the same method, using the party currently preferred as a starting point.

The method to choose the parties and attribute the numbers is adapted when the party currently preferred is at the ends of the array of parties.

4.2 Voters’ preferences for the parties - when the position on the left/right axis has been specified

If the user has specified the position of the parties on the left/right axis, this information is used to create the voters’ preferences for the parties. The procedure is as follows:

1. The first n_1 voters (corresponding to the share of Party 1 in the population) have Party 1 in the first place of their preference order, the next n_2 voters (corresponding to the share of Party 2 in the population) have Party 2 in the first place of their preference order, etc.

2. For each voter, the parties, excepting the voter’s first preference, are ordered according to their distance on the left/right axis with respect to the first party. The voter’s first preference becomes the “reference party”.

3. With probability p_1 the next party in the voter’s preference ordering is the closest to the reference party. With probability p_2 the next party is the second closest to the reference party. With probability $p_3 = 1 - p_1 - p_2$ the next party is one other party at random. If more than one party are at an equal distance to the reference party, we choose one of them at random.

4. The party just chosen becomes the reference party and the procedure iterates until the voter’s preference ordering is complete.

4.3 Voters’ preferences for the candidates

The procedure described in this section is employed for the simulation of the Single Transferable Vote system (see 4.6.14).

1. we assume that each party presents a number of candidates equal to “Number of seats per plurinominal district”; therefore each party has a list of (at
least 2) candidates. The candidates are inserted in the voters’ preferences according to their position in the list: the candidate in first position is chosen before the candidate in second position, etc. When creating the voters’ preferences for the candidates, the program takes into account their preferences for the parties, computed as described above.

2. the necessary parameters, computed using the probabilities defined in the first window of a simulation are as follows:

- P_p: probability of choosing a *candidate* from the preferred party (defined by the user at the beginning of a simulation: “Probability of choosing the preferred candidate”)
- $(1 - P_p)$: probability of choosing a *candidate* from a party which is not the preferred one
- P_1: probability of choosing the *party* next to the preferred one (defined by the user at the beginning of a simulation: “probability to choose the first adjacent party”)
- P_2: probability of choosing the *party* in third place of the voter’s preference order (defined by the user at the beginning of a simulation: “probability to choose the second adjacent party”)
- P_3: probability of choosing one of the other *parties* in the voter’s preference order $(1 - P_1 - P_2)$
- $(1 - P_p).P_1$: probability to choose a *candidate* from the party in second position in the voter’s preference order
- $(1 - P_p).P_2$: probability to choose a *candidate* from the party in third position in the voter’s preference order
- $(1 - P_p).P_3$: probability to choose a *candidate* from another party in the voter’s preference order

3. the parties are given number from 1 to 100 according to the following rules:

- the preferred party is given numbers from 1 to $n_1 = 100.P_p$
- the second preferred party is given numbers from $(n_1 + 1)$ to $n_2 = n_1 + 100.[(1 - P_p).P_1]$
- the third preferred party is given numbers from $(n_2 + 1)$ to $n_3 = n_2 + 100.[(1 - P_p).P_2]$
- the other parties are given numbers from $(n_3 + 1)$ to 100

4. the voter’s preferences for candidates are created extracting random numbers from 1 to $N = 100$ and choosing the candidates from the party corresponding to the chosen number, as explained below. To make the search faster, the extracted number is removed from the range. When all candidates from the party have been chosen, the numbers attributed to this party are removed
from the range.
For this system to work, we need to be sure that each range contains enough
numbers to represent all candidates for the party. If the range is too small,
all the ranges are recomputed so that the range becomes big enough, and the
proportions of all ranges remain intact. At this point, the upper limit \(N \) of
the range may become greater than 100.

5. the voter’s first preference is the first candidate of the preferred party. This
candidate is deleted from the list of candidates for the party. The second
candidate in the party’s list becomes ‘first’.

6. a number between 1 and \(N \) is chosen at random: the chosen candidate is
the one at the first position of the party associated with this number. The
candidate is deleted from the list of available candidates for the party.
If the number extracted corresponds to the “other parties”, the party to con-
sider is randomly chosen among these “other parties”.

7. the process is repeated until the voter’s preference orders for the candidates
is completed.

4.4 Creating uninominal districts

NOTE: in what follows, ‘district’ stands for ‘uninominal district’.
The districts are created after the voters’ preferences have been computed. Each
district contains \(E \) voters, with \(E \) being equal to the value of the parameter “Num-
ber of voters per uninominal district” defined by the user at the beginning of a
simulation (therefore, all the districts have the same size). In the program, it is
possible to set up the concentration of some parties in some districts (for instance,
think of districts in which a large majority of the voters vote for a given party,
whereas few voters vote for this party in other districts). This feature is defined in
the third window of a simulation, when the user sets up the characteristics of the
parties. A party that is concentrated in one or more districts is called major party.
When a party is said to be major, the user must declare the number of districts in
which it is concentrated, and the weight of the concentration \(T > 1 \), which allows
the program to compute how many voters with this party as first preference are
assigned to the district. In other words, let us define:

- \(K \) the number of districts in which the party is concentrated
- \(F \) the total number of voters with this party as first preference
- \(N \) the size of the parliament (number of uninominal districts)

then each district in which the party is concentrated will contain \(T \cdot F/N \) voters
with this party as first preference. \(T \) must be greater than 1 to make sure that the
voters are concentrated in some districts (thereafter called major districts).
The creation of the uninominal districts is performed according to the following steps:

1. Separate the major parties from the ‘normal’ parties, creating 2 lists. First, the districts containing major parties are created. The districts containing normal parties are created in a second stage.

2. For each major party:

 (a) separate all voters with this party as first preference from the other voters, creating a new list, and deleting them from the list of voters

 (b) find out (from the characteristics of the party) the number of districts in which the party is concentrated

 (c) find out (from the characteristics of the party) the concentration coefficient (variable \(\text{coefficient} \))

 (d) find out the share of votes of the party in the population

 (e) find out how many voters have this party as first preference (variable \(\text{total} \), size of the list created above)

 (f) find out how many voters are inserted in the ‘major’ districts:
 $$\text{numberOfVotersToInsert} = \frac{\text{coefficient} \times \text{total}}{\text{numberOfUninominalDistricts}}$$

 (g) create the major districts for the party, inserting the number of voters computed above

 (h) if after this procedure some voters with the party as first preference have not been inserted in a district, they are put back into the main list of voters.

When all major districts have been created, if some of them are not full (the number of voters inserted in the major district is smaller than the size of the district), they are completed with voters chosen randomly in the main list of voters.

3. For each normal district: the required number of voters is chosen at random from the main list of voters.

4.5 Creating plurinominal districts

NOTE: in what follows, ‘district’ stands for ‘uninominal district’.

The plurinominal districts are created grouping uninominal districts according to the following rules:
1. The number of plurinominal districts that must be created is obtained dividing the number of uninominal districts (which is equal to the size of the parliament) by the number of seats per plurinominal district.

NOTE: to differentiate between uninominal and plurinominal districts, the ‘name’ of the plurinominal districts are written with roman numbers in the output from the program.

2. Create a list of plurinominal districts with their names.

3. Separate the uninominal districts in 2 lists: major and normal.

4. Starting with the major districts (which contain concentrated parties):

 (a) For each major party, the uninominal districts where this party is concentrated are extracted from the list of major uninominal districts. Then a plurinominal district is taken at random in the list and the uninominal districts where the party is concentrated are included in it, until either the plurinominal district is complete or all the districts where the party is concentrated have been inserted in a plurinominal district.

 (b) If the plurinominal districts are not full with the major districts, they are completed with non major uninominal districts, taken randomly.

5. If there are no major uninominal districts, or all the major districts have been used, the remaining plurinominal districts are created taking at random the requested number (“number of seats per plurinominal district”) of uninominal districts.

4.6 The Parliaments

NOTE 1: If there are ex-aequo winners in a district (parties or candidates with the same number of votes), the effective winner will be the party or candidate who has the highest share in the whole population. In the case where the possible winners also have the same share of votes in the population, the effective winner is chosen at random among them.

NOTE 2: in what follows, ‘district’ stands for ‘uninominal district’.

4.6.1 One-district Proportionality

All districts are aggregated: the seats in the parliament have the same proportions as the shares of votes in the population. In other words, the parliament represents exactly (but for rounding) the shares inserted when setting up the simulation.

4.6.2 Threshold Proportionality

When the user clicks the button next to this system, a dialog window appears, asking him to set-up the threshold level. All the parties who have a share of votes
(strictly) smaller then this threshold level will be excluded from the parliament. The seats are divided among the remaining parties proportionally with their share of votes in the population.

4.6.3 First Past The Post (Plurality)

The winner in each district is the party with the most votes in the district.

4.6.4 First Past The Post (Plurality) - with strategic vote

In this case, the voter has a positive probability of voting for the main party of a coalition, instead of his preferred party. This probability is equal to:

$$ p = (1 - kD/100) $$

where $0 \leq D \leq 100$ is the distance between the main party of a coalition and the voter's preferred party.

When this system is chosen, the user is asked to give a value for k. The user is then asked to define the coalitions of parties and, if they were not defined at the beginning of the simulation, the parties’ positions on the left/right axis. The probability of voting for the preferred party is a multiple, k, of the relative distance on the left-right axis of the main party of the coalition, $D/100$ (obviously, if $kD/100 > 1$ the value is truncated to 1). $p = 1 - kD/100$ is consequently the probability of voting for the main party of the coalition.

In each district, the main party of the coalition is the one with the highest share of votes in the district. In other words, in each district, it is the party which appears most often as the voters’ first preference. As a consequence, the main party in a coalition may change from district to district.

As with the previous system, the winner in each district is the party with the most votes in the district.

4.6.5 Runoff Majority

In each district, all the parties minus the 2 who have the most votes are excluded. A second round is performed with these two only, and the one who has the largest number of votes wins. If in the first round one party has more than 50% of the votes, it wins without the need for a second round.

4.6.6 Mixed Member I

In this system, part of the parliament is elected with the First Past The Post system, and the other with the One-district Proportional system. The percentage of seats elected with the One-District Proportional system is a parameter specified by the user when the Mixed Member I system is chosen.

Practically, the program computes a full parliament with the First Past The Post
system, and another parliament with the One-district Proportional system. The final parliament is a weighted average of these two parliaments, the weights being determined by the parameter set up by the user.

4.6.7 Mixed Member I - with strategic vote
As the previous one using the First Past the Post system with strategic vote.

4.6.8 Mixed Member II
In this system, part of the parliament is elected with the First Past The Post system, and the other with the One-district Proportional system. However, the votes used for the First Past The Post part of the parliament are lost for the One-district Proportional one (this is the difference with the previous system).
In the program, the part of the parliament elected with the First Past The Post system is determined by the user. As with the previous system, the program computes first a full parliament with the First Past The Post System, then a parliament with the One-district Proportional system with the votes not used by the First Past The Post system. The final parliament is, as before, a weighted average of these two parliaments.

4.6.9 Mixed Member II - with strategic vote
As the previous one using the First Past the Post system with strategic vote.

4.6.10 Borda Criterion
This system uses the voters’ complete preference order for parties. For each voter, the program gives points to each party, according to its place in the preference order. Here, the points correspond exactly with the position of the party in the array of preferences of the voter (that is 0 for the most preferred party, 1 for the second preferred party, \ldots, \(N - 1 \) for the least preferred party); where \(N \) is the total number of parties. The points obtained by each party are then summed up for all voters in the population. The winner is the party with the smallest sum.

4.6.11 Condorcet Winner
In each district the Condorcet Winner is chosen. This is the party that beats all the others when confronted in pairs.
NOTE: in case of cycle, the party with the highest number of votes in the district wins. The program reports under the graph of the parliament the number of cycles found during the computation of this system.
4.6.12 VAP System

In this system, we consider a ‘real’ parliament (defined in terms of seats) and a ‘virtual’ parliament (defined in terms of votes for the parties in the government). The real parliament is elected with the One-district Proportional system. The virtual parliament depends on the composition of the government. As a consequence, the first output of this system is identical to that of the One-District Proportional system.

To obtain the virtual parliament (in terms of votes of the parties in government), the user must decide which parties compose the government (upper right panel). When the parties in government reach the majority, the virtual parliament is computed according to the following rule: the votes of the MPs from the bigger parties in the government are given a weight $a > 1$. These parties are defined crucial.

The rationale for this weight is to allow the government to keep the majority even if some small parties leave the governing coalition. Therefore, the smaller parties lose their blackmail power. The government loses the majority only if big parties leave the coalition.

a is computed as follows:

$$a \sum_{i=1}^{m} X_i = (a \sum_{i=1}^{m} X_i + T - \sum_{i=1}^{m} X_i)/2 + y$$

that is

$$a = \frac{T - \sum_{i=1}^{m} X_i + 2y}{\sum_{i=1}^{m} X_i}$$

where X is the number of seats in the parliament of the m biggest parties in the government, and T is the size of the parliament. This way, the government keeps a majority of y even if small parties leave it.

X and y are parameters. In the program, they have the following values:

- $y = 1$, that is the government keeps a majority of 1 vote if the small parties leave
- $X = 18\%$ that is a crucial party must have at least 18% of seats in the parliament, and be part of the government. Note: X can be specified by the user when the virtual parliament is created, 18% is only the default value of the parameter.

Once it is created, the virtual parliament substitutes the real one in the parliament graph and in the summary table below.
4.6.13 Multi-District Proportionality

Hare method The program:

1. computes the quota (number of votes necessary in order to obtain a seat) using the following formula:
 \[\text{hare quota} = \frac{\text{number of electors in the plurinominal district}}{\text{number of seats per plurinominal district}} \]
2. gives each party as many seats as the number of full quotients \((n=\text{number of votes/quotas})\) obtained
3. subtracts from the votes for each party the number of votes used to give the seats to the party \((n*\text{quota})\): we get the remaining votes for each party
4. checks whether all the seats available for the district have been attributed to a candidate
 - SI’ (yes): the process terminates
 - NO: attributes the remaining seats to the parties with the most remaining votes

Imperiali Method Like the Hare method, but using the following formula to find the quota:
\[\text{imperiali quota} = \frac{\text{number of electors in the plurinominal district}}{\text{number of seats per plurinominal district} + 2} \]

NOTE: when there are few parties (less than 5), or the plurinominal districts are small (parameter “number of seats per plurinominal district” smaller than 10), the share in the Imperiali method is very small. As a consequence, the method will favour small parties, and under-represent large parties.

Sainte-Lagüe Method The program:

1. creates a matrix containing all the parties, their respective votes and the factors as shown in table 1 (assuming that the number of seats per plurinominal district is equal to 5):

 \[
 \begin{array}{|c|c|c|c|c|}
 \hline
 \text{Factor Sainte Lagüe} & \text{party A} & \text{party B} & \text{party C} & \text{party D} & \text{party E} \\
 \hline
 1 & 350 & 310 & 140 & 120 & 80 \\
 3 & 116 & 103 & 46 & 40 & 26 \\
 5 & 70 & 62 & 28 & 24 & 16 \\
 \hline
 \text{Total sum of seats} & 2 & 1 & 1 & 1 & 0 \\
 \hline
 \end{array}
 \]

 Table 1: Matrix for the Sainte Lagüe method

2. uses as factors a series of odd numbers starting with 1 (that is 1, 3, etc).
3. takes from the matrix the best \(n\) results (where \(n=\text{number of seats per plurinominal district}\) and gives the parties as many seats as they had best results.
D’Hondt Method As the Sainte-Lagüe method, but using a series of factors starting with 1 (that is 1, 2, 3, etc) and ending with \(n \), the number of seats per plurinominal district.

4.6.14 Single Transferable vote

With this system, the seats for each party, in each plurinominal district, are assigned according to a quota value. If some seats are not assigned with this method, the votes unused by the elected candidates are transferred to the next candidates in the elector’s preference ordering. The candidates with the highest number of votes (obtained + transferred) are elected.

The types of quota 3 methods can be used to compute the quota:

N.B. quota : (number of electors in the plurinominal district) divided by (number of seats per plurinominal district + 1)

Droop quota : [(number of electors in the plurinominal district) divided by (number of seats per plurinominal districts + 1)]+1

Hare quota : (number of electors in the plurinominal district) divided by (number of seats per plurinominal district)

Creating the parliament

1. from the elector’s preference ordering with respect to the candidates, the program sums up the votes obtained by each candidate (we assume that the elector votes for his preferred candidate).

2. some candidates have a total of votes equal or greater than the quota?

 (a) YES

 i. the candidates with more votes than the quota are inserted in a list of elected candidates

 ii. these candidates are eliminated from the list of candidates to be elected for their party

 iii. the surplus of votes of the elected candidates is transferred as described below.

 (b) NO

 i. the candidate with the smallest number of votes is eliminated from the list of available candidates

 ii. the voters who had the candidate just eliminated as first preference give their votes to the next candidate in their preference order

This process is repeated until:
• the requested number of candidates is elected (parameter “number of seats per plurinominal district”)

• the number of candidates still to be elected is equal to the number of seats left. In this case, the remaining candidates are elected, even though their votes are less than the quota.

Criteria for transferring the surplus

• for each elected candidate (number of votes greater than or equal to the quota), the surplus is computed using the following formula: \(\text{surplus} = \text{sum of votes given to the candidate} - \text{quota} \)

• the surplus is transferred, starting by the largest, in the following way:
 1. from the candidate’s voters, a number of voters equal to the surplus to share out is extracted at random
 2. the votes of these voters are transferred to the candidate indicated as next preferred in their preference ordering, and not yet elected
 3. if doing this we find that a candidate’s votes becomes equal to or greater than the quota, this candidate is elected and eliminated from the list of candidates available to be elected.

4.7 The indexes

NOTE: for the VAP system, these indexes are computed using the virtual parliament (that is the one in terms of votes).

4.7.1 Representativeness index - 1

The representativeness index of the electoral system \(j \) is given by:

\[
R_j = 1 - \frac{\sum |S_{j,i} - S_{pp,i}|}{\sum |S_{u,i} - S_{pp,i}|} \tag{3}
\]

where

• \(S_{j,i} \) = number of seats obtained by the party \(i \) with the system \(j \)

• \(S_{pp,i} \) = number of seats obtained by the party \(i \) with the one-district proportional system

Hence the first sum is the sum of the seats ‘displaced’ with respect to the proportional system. This number is an indicator of the lack of proportionality.

• \(S_{u,i} \) = number of seats that the party has in the case of maximum lack of proportionality, defined as the case in which the largest party in the proportional system has all the seats, and the other parties have none.
4.7.2 Representativeness index - 2

\[R = 1 - \frac{X}{T} \]

(4)

where

- \(X \) = number of seats in excess with respect to one-district proportionality
- \(T \) = total number of seats in the parliament

This is a “naive” index, easy to understand and therefore usable in surveys. If for instance there are 100 seats in the parliament and three parties A, B, C with 50, 30 and 20 seats respectively with the one-district proportional system, and 80, 20 and 0 seats respectively with the current system, the index is equal to 0.4 (parties B and C lost 30 seats overall and party A gained 30).

The two indices of representativeness are highly correlated, but they have a different meaning. That of \(R_2 \) is obvious; \(R_1 \) has two differences:

a) the seats assigned differently from pure proportionality are counted twice, as they are unduly gained from one side and unduly lost from the other. If a party gains 10 seats and another one loses 10, the loss of proportionality (in the numerator) is 20, while in \(R_2 \) is 10. It is possible to make \(R_1 \) analogous to \(R_2 \), simply dividing the numerator by 2;

b) the standardization (and the value of the denominator) are case-specific. As a result, for a given share of seats allocated differently from pure proportionality, the value of \(r_1 \) increases if the relative decrease of parties that lose seats decreases. For instance, if under pure proportionality A has 70 seats and B 30, and under X they are respectively 90 and 10 (hence with 20% of the seats misallocated and a relative decrease of B of 2/3), the value of \(R_{1,x} \) is 0.33; while if the figures are 60 and 40 under pure proportionality and 80 and 20 under X (again with 20% of the seats misallocated, but with a relative decrease of B of 50%), the value of \(R_{1,x} \) rises to 0.5.

4.7.3 Governability index - 1

This index is made up of two sums:

\[G_j = A + B \]

(5)

- \(A = 1/(C + 1) \) where \(C \) is the number of parties in the government such that if they leave the government, it loses the majority (these parties are said to be crucial)

- \(B = \frac{n}{[\left(\frac{m}{2}\right) + 1]} \times \left[\frac{1}{C} - \frac{1}{C+1} \right] \) where
 - \(n \)=number of seats above the majority level (half the number of seats plus one if the number of seats is even, half the number of seats plus 0.5 if it is odd)
Suppose for instance that the majority is made of two parties, both crucial. The A component of the index states that its value is comprised between $1/3$ and $1/2$. The exact value is determined by the component B. If the majority has just half of the seats plus one, the value of B will be zero, and $A + B$ will be equal to A, i.e. to $1/3$. At the opposite, if the majority has all the seats, the value of $A + B$ will be very close to $1/2$ (actually it will tend to $1/2$ as the total number of seats increases).

4.7.4 Governing index - 2

\[G = \frac{S}{N} \]
\[\text{(6)} \]

where

- S = share of seats in the parliament obtained by the parties in the government
- N = number of parties in the government

This is a “naive” index, that simply expresses the direct ratio between governability and S, and the inverted ratio between governability and N. It is easy to understand and can therefore be used in surveys.

4.7.5 Governing index - 3

\[G = \frac{S}{N} \left(\frac{N}{P} \right)^a \]
\[\text{(7)} \]

where

- S = share of seats in the parliament obtained by the parties in the government
- N = number of parties in the government in the system x
- P = number of parties of the minimal majority in the one-district proportional system that includes all the parties of the majority of the system x
- a = parameter with values between 0 and 1, set up by the user

This index introduces the factions within the parties. Assume that there are 100 seats in the parliament, that the current government (system x) is made up of two parties with 60 seats, and that in the one-district proportionality these parties would reach the majority only in alliance with 3 other parties. In this case, S/N is equal to 0.3 and N/P to 0.4. Now assume $a = 0$. In this case, S/N is not changed, which means that the factions have no influence. If instead $a = 1$, the index becomes S/P (0.12 in the example), which means that the ‘real’ parties are not the
ones in the government with the system x but those in the government with the one-district proportional system. In the system x, those parties become factions of bigger parties in order to get votes, but still maintain fully their independence. The weight of the factions increase with a: if for instance $a = 0.8$, the index is equal to 0.144 instead of 0.3.

For further details on the meaning of the representativeness index - 1 and the governability index - 1, see Marie-Edith Bissey, Mauro Carini and Guido Ortona “ALEX3: a simulation program to compare electoral systems”, Journal of Artificial Societies and Social Simulation, vol.7, n.3 (2004), downloadable from http://jasss.soc.surrey.ac.uk/7/3/3.html.

5 EXPANDING THE PROGRAM

5.1 Adding a new electoral system

[To add a new electoral system or otherwise make changes to the program, you need to have Java Standard Edition installed on your computer, not just Java Runtime!]

The program is written using the object-programming capabilities of Java, therefore any new electoral system has to be extended from a preceding one. Only the methods that differ between the two systems have to be written. All the electoral systems are extended from the class Parliament in the package parliaments. Uninominal systems are grouped in the package parliaments.uninominal and the plurinominal are in the package parliaments.plurinominal. Each class defining a new system has a name identical to its reference key in the language file (directory languages uninominal_**.properties or languages plurinominal_**.properties). This identity allows the program to load automatically any new system in the list of the available parliaments. No other class needs to be altered.

To create a new electoral system:

1. create a new class in the package (and the directory) parliaments uninominal or parliaments plurinominal, with a name that represents the system, and is identical to its reference key in the language file

2. this new class must at least extend the Parliament class. It is possible to extend another class of the package to take advantage of its characteristics (all the existing classes in the program already extend Parliament).

3. the Parliament declares 3 abstract functions, that must be defined for each new class that extends it:

 • public abstract HashMap findAllocationOfSeats();

 defines the way the seats are allocated in the parliament. It is the most
important class of the electoral system. The two other classes that follow allow to identify the parliament in the various menus and output files.

- **public abstract String getParliamentName();**
defines the name of the parliament using the language file and adding to it the name and/or values of extra parameters (e.g. the rounding method for the VST, or the threshold value of the threshold proportional)

- **public abstract String getParliamentKey();**
defines the key with which the parliament is saved in the list of the simulations (object SimulationRepository of the VotingObjects package). This key is used to save the parliament in a file, or to re-load it if the display window has been closed. Again in this case it is advisable to include in this string the names and/or values of the extra parameters of the system.

In addition, it is possible to define extra parameters (e.g. the rounding method for the plurinominal systems) in the class constructor.

To extract a name from the language file, the program uses the **getString** function from the Language object, which takes as arguments the name of the file and the requested key:

```java
language.getString("uninominal","ThresholdProportional");
```

The language object is an instance of the Language class of the globals package. This is an object of type Singleton (there can be only one instance of this object in the program). Using this type of object allows to manage the display language inside the program, and to modify it ‘on the fly’. The name of the file to pass as argument is therefore only the part before the extension .properties.

4. add the name of the class as key string in all the language files, and the name of the parliament in the considered language. **NOTE:** even if you do not translate the name of the parliament in other languages than your own, it is recommended to insert the parliament key in all language files.

5. compile the program using the **make** command at the MS/DOS prompt.

The new electoral system will automatically appear in the list of available electoral systems that is shown once the districts have been created. **NOTE:** a plurinominal system will only appear if the parameter “number of seats per plurinominal district” is greater than one in the simulation.

5.2 Adding a new index

The steps to follow are similar to those indicated for the electoral systems. The indexes are in the package indexes and all extend the Index class, which declare
the abstract function `computeIndex()` that must be defined for each index. Once the program has been recompiled using the `make` command, the new index will automatically appear in the bottom right list of indexes within the parliament window. As for the electoral system, the name of the new index class must be the same as its reference key in the language files `languages index_xx.properties`.

5.3 Adding a new language

You can add a new language to the program without recompiling it. It is enough to create the following 5 files (and to translate their contents):

- `indexes_xx.properties` contains the reference keys and names of the indexes that appear in the bottom right part of the parliament window
- `uninominal_xx.properties` contains the reference keys and names of the uninominal systems
- `plurinominal_xx.properties` contains the reference keys and names of the plurinominal systems
- `labels_xx.properties` contains the reference keys and names/messages that appear in the various windows of the program
- `messages_xx.properties` contains the reference keys and text of the error messages of the program

NOTE 1: In the file names indicated above the sequence `xx` must be substituted by the 2 letters that identify the requested language (for instance `it` (Italian), `fr` (French), `en` (English)). A list of the languages accepted by Java can be seen at the following address: http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt.

NOTE 2: Up to now the languages used in the program use the latin alphabet. I do not know how (and whether) the program would work with a cyrillic or an Asian alphabet.

NOTE 3: I would be glad if you could send me your translation of the program (files `*.properties` and `readme` if you did that one too) at the following address: marieedith.bissey@sp.unipmn.it so I can include them (with all due reference to the translator) in further versions of the program.

5.4 Creating a file of preferences

As explained above, the program allows to save a simulation, as well as the parameters of the simulation. For instance, if the simulation data are saved while one saves a parliament, it is possible to re-use this file to re-create a new simulation with the same parameters. The program simulates automatically the missing data.
(voters’ preferences and district composition).

The directory savedSimulations contains some examples of files saved from the program (exampleUninominal.out and examplePlurinominal.out). These are simple ascii files, so it is not too complex to create one of them to be loaded up in the program, in order to introduce preferences and district composition obtained from surveys.

5.4.1 The least a file must contain

The least a file must contain are the following parameters, in a format identical to the one reported below:

```plaintext
nameRepository : sim_1 // name of the simulation
descriptionRepository :
numberPlurinominalDistricts : 5 // Number of plurinominal districts
numberUninominalDistricts : 10 // Number of uninominal districts
probFirst : 0.8 // first adjacent party
probSecond : 0.1 // second adjacent party
probPreferred : 0.9 // preferred candidate
totalNumberVoters : 1000 // total number of voters
numberParties : 3 // Number of parties
numberVoters : 100 // Number of voters per uninominal district
numberCandidates : 2 // Number of seats per plurinominal district

party_1_name:1 // party name
party_1_share:25.0 // share (%)
party_1_major:false // major?
party_1_concentration:0 // concentrated in how many districts?
party_1_coefficient:1.0 // Concentration coefficient

party_2_name:2 // party name
party_2_share:40.0 // share (%)
party_2_major:false // major?
party_2_concentration:0 // concentrated in how many districts?
party_2_coefficient:1.0 // Concentration coefficient

party_3_name:3 // party name
party_3_share:35.0 // share (%)
party_3_major:false // major?
party_3_concentration:0 // concentrated in how many districts?
party_3_coefficient:1.0 // Concentration coefficient
```

The strings on the left of the “:” allow to identify the variables to insert in the program, therefore they must not be altered. The decimal values must have a dot to separate the decimal part of the number (not a comma). The strings on the right
of the “:”, preceded by “//” are comments and can be omitted. The indexes used as
the parties name must start from 1 to the number of parties in the system.
With these values, the program is able to simulate the voters' preferences for the
parties (and for the candidates if requested), to establish the composition of the
districts and to compute the parliaments.

5.4.2 Other contents

A file saved from the program contains, in addition to the parameters described
above, the voters' preferences for the parties and the candidates, and the composi-
tion of the uninominal and the plurinominal districts. If one of these elements is
present in the file in the expected format and is complete, the program will use it.
Otherwise, it will be simulated.
Please look at the example files to see which format you must use. As for the
previous section, each row must contain 3 elements separated with “:”:

chiave_di_riferimento:valore:commento

Voters' preferences for parties

voter_1000_partyPreferences:[3, 2, 1]:
voter_999_partyPreferences:[3, 2, 1]:
voter_998_partyPreferences:[3, 2, 1]:
voter_997_partyPreferences:[3, 1, 2]:
voter_996_partyPreferences:[3, 2, 1]:
....

In this case, there are 1000 voters in the simulation, and 3 parties (identified as 1, 2,
3). For each voter, the reference key is: voter_xxx_partyPreferences:[a,b,c]:
where xxx is the index of the voter, in our case from 1 to 1000, the list of parties
is written between square brackets, the indexes of the parties are comma-separated
lists, the most preferred parties is the first one written in the list (on the left). Please
note that even if there are no comments, the second “:” must appear anyway.

Voters' preferences for candidates A candidate is identified by its party, and its
position in the party’s list of candidates. For instance, if there are 3 parties and
2 seats per plurinominal district, a party list will contain 2 candidates, and there
will therefore be a total of 6 candidates in the simulation. In this case, the list of
candidates will be as follows:

candidate1_1:1_1:// candidate in first position in the list of party 1
candidate1_2:1_2:// candidate in second position in the list of party 1
candidate2_1:2_1:// candidate in first position in the list of party 2
candidate2_2:2_2:// candidate in second position in the list of party 2
candidate3_1:3_1:// candidate in first position in the list of party 3
candidate3_2:3_2:// candidate in second position in the list of party 3
Voters’ preferences for the candidates are written as follows:

voter_1000_candidatePreferences:[3_1, 3_2, 2_1, 2_2, 1_1, 1_2]:
voter_999_candidatePreferences:[3_2, 3_1, 2_1, 2_2, 1_1, 1_2]:
voter_998_candidatePreferences:[3_1, 3_2, 2_1, 1_1, 2_2, 1_2]:
voter_997_candidatePreferences:[3_1, 3_2, 1_1, 2_2, 2_1, 1_2]:
voter_996_candidatePreferences:[3_2, 2_1, 3_1, 2_2, 1_1, 1_2]:

where in the list of candidates, the number before the _ is the index of the party, and the number after the _ is the position of the candidate in the list.

Composition of uninominal districts Uninominal districts are essentially groups of voters. The size of the districts is defined by the numberVoters parameter and is the same for all the uninominal districts in the simulation. In the file, the composition of a uninominal district is written as follows

```
districtUninominal_1_nameOfDistrict : 1 :// Name of the uninominal district
districtUninominal_1_concentratedMajorParty : false :// does it contain a concentrated party?
districtUninominal_1_nameMajorParty : 0 : // name of the major party (if there is one)
districtUninominal_1_listOfVoters : [956, 154, 550, 76, 935, 113, 407, 507, 818, 530, 41, 600, (...), 759, 640]
```

The first 3 rows describe the district: its ‘name’ (or index), whether it contains a concentrated party, and in this case, the party index. If it does not contain a concentrated party, as is the case above, the party index is 0. The fourth row contains the voters that belong to the district, identified by their index. In the example, the district contains the voters 956, 154, etc. The list of voters must contain numberVoters elements.

Composition of plurinominal districts Plurinominal districts are made of uninominal districts.

```
districtPlurinominal_1_name : 1 :// Name of the plurinominal district (roman= I)
districtPlurinominal_1_listOfDistricts : [2, 4]
```

The first row defines the name of the plurinominal district (as before, an index). In the results files, this plurinominal district will appear with a name written in roman number, to distinguish it from the uninominal districts. The list of uninominal districts contained in the plurinominal district contains numberCandidate elements, the uninominal districts are identified by their index.
References

Working Papers

The full text of the working papers is downloadable at http://polis.unipmn.it/

<table>
<thead>
<tr>
<th>*Economics Series</th>
<th>**Political Theory Series</th>
<th>† Al.Ex Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 n.91‡</td>
<td>Marie-Edith Bissey and Guido Ortona: The program for the simulation of electoral systems ALEX4.1: what it does and how to use it</td>
<td></td>
</tr>
<tr>
<td>*2007 n.90</td>
<td>Roberto Ricciuti: Un'analisi economica della partecipazione ai referendum abrogativi</td>
<td></td>
</tr>
<tr>
<td>*2007 n.89</td>
<td>Michela Bia and Alessandra Mattei: Application of the Generalized Propensity Score. Evaluation of public contributions to Piedmont entreprises</td>
<td></td>
</tr>
<tr>
<td>*2007 n.88</td>
<td>Michela Bia: The Propensity Score method in public policy evaluation: a survey</td>
<td></td>
</tr>
<tr>
<td>*2007 n.87</td>
<td>Luca Mo Costabella and Alberto Martini: Valutare gli effetti indesiderati dell’istituto della mobilità sul comportamento delle imprese e dei lavoratori.</td>
<td></td>
</tr>
<tr>
<td>**2007 n.86‡</td>
<td>Stefania Ottone: Are people samaritans or avengers?</td>
<td></td>
</tr>
<tr>
<td>*2007 n.85</td>
<td>Roberto Zanola: The dynamics of art prices: the selection corrected repeat-sales index</td>
<td></td>
</tr>
<tr>
<td>*2006 n.84</td>
<td>Antonio Nicita and Giovanni B. Ramello: Property, liability and market power: the antitrust side of copyright</td>
<td></td>
</tr>
<tr>
<td>*2006 n.83</td>
<td>Gianna Lotito: Dynamic inconsistency and different models of dynamic choice – a review</td>
<td></td>
</tr>
<tr>
<td>2006 n.82</td>
<td>Gabriella Silvestrini: Le républicanisme genevois au XVIIIe siècle</td>
<td></td>
</tr>
<tr>
<td>*2006 n.81</td>
<td>Giorgio Brosio and Roberto Zanola: Can violence be rational? An empirical analysis of Colombia</td>
<td></td>
</tr>
<tr>
<td>*2006 n.80</td>
<td>Franco Cugno and Elisabetta Ottoz: Static inefficiency of compulsory licensing: Quantity vs. price competition</td>
<td></td>
</tr>
<tr>
<td>*2006 n.79</td>
<td>Carla Marchese: Rewarding the consumer for curbing the evasion of commodity taxes?</td>
<td></td>
</tr>
<tr>
<td>2006 n.78</td>
<td>Joerg Luther: Percezioni europee della storia costituzionale cinese</td>
<td></td>
</tr>
<tr>
<td>**2006 n.77‡</td>
<td>Guido Ortona, Stefania Ottone, Ferruccio Ponzano and Francesco Scacciati: Labour supply in presence of taxation financing public services. An experimental approach.</td>
<td></td>
</tr>
</tbody>
</table>
2006 n.76* Giovanni B. Ramello and Francesco Silva: *Appropriating signs and meaning: the elusive economics of trademark*

2006 n.75* Nadia Fiorino and Roberto Ricciuti: *Legislature size and government spending in Italian regions: forecasting the effects of a reform*

2006 n.74** Joerg Luther and Corrado Malandrino: *Letture provinciali della costituzione europea*

2006 n.73* Giovanni B. Ramello: *What's in a sign? Trademark law and economic theory*

2006 n.72* Nadia Fiorino and Roberto Ricciuti: *Determinants of direct democracy across Europe*

2006 n.71* Angela Fraschini and Franco Oscultati: *La teoria economica dell'associazionismo tra enti locali*

2006 n.70* Mandana Hajj and Ugo Panizza: *Religion and gender gap, are Muslims different?*

2006 n.69* Ana Maria Loboguerrero and Ugo Panizza: *Inflation and labor market flexibility: the squeaky wheel gets the grease*

2006 n.68* Alejandro Micco, Ugo Panizza and Monica Yañez: *Bank ownership and performance: does politics matter?*

2006 n.67* Alejandro Micco and Ugo Panizza: *Bank ownership and lending behavior*

2006 n.66* Angela Fraschini: *Fiscal federalism in big developing countries: China and India*

2006 n.65* Corrado Malandrino: *La discussione tra Einaudi e Michels sull'economia pura e sul metodo della storia delle dottrine economiche*

2006 n.64* Stefania Ottone: *Fairness: a survey*

2006 n.63* Andrea Sisto: *Propensity Score matching: un'applicazione per la creazione di un database integrato ISTAT-Banca d'Italia*

2005 n.62* P. Pellegrino: *La politica sanitaria in Italia: dalla riforma legislativa alla riforma costituzionale*

2005 n.61* Viola Compagnoni: *Analisi dei criteri per la definizione di standard sanitari nazionali*

2005 n.60* Guido Ortona, Stefania Ottone and Ferruccio Ponzano: *A simulative assessment of the Italian electoral system*

2005 n.59* Guido Ortona and Francesco Scacciati: *Offerta di lavoro in presenza di tassazione: l'approccio sperimentale*
<table>
<thead>
<tr>
<th>Year</th>
<th>Issue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>n.58</td>
<td>An extension of the model of Inequity Aversion by Fehr and Schmidt</td>
<td>Stefania Ottone and Ferruccio Ponzano</td>
</tr>
<tr>
<td>2005</td>
<td>n.57</td>
<td>Transfers and altruistic punishment in Solomon's Game experiments</td>
<td>Stefania Ottone</td>
</tr>
<tr>
<td>2005</td>
<td>n.56</td>
<td>Mean voting rule and strategical behavior: an experiment</td>
<td>Carla Marchese and Marcello Montefiori</td>
</tr>
<tr>
<td>2005</td>
<td>n.55</td>
<td>La sussidiarietà nei trattati e nelle istituzioni politiche dell’UE</td>
<td>Francesco Ingravalle</td>
</tr>
<tr>
<td>2005</td>
<td>n.54</td>
<td>It takes three to tango: soft budget constraint and cream skimming in the hospital care market</td>
<td>Rosella Levaggi and Marcello Montefiori</td>
</tr>
<tr>
<td>2005</td>
<td>n.53</td>
<td>Competition among different levels of government: the re-election problem</td>
<td>Ferruccio Ponzano</td>
</tr>
<tr>
<td>2005</td>
<td>n.52</td>
<td>Rationally addicted to cinema and TV? An empirical investigation of Italian consumers</td>
<td>Andrea Sisto and Roberto Zanola</td>
</tr>
<tr>
<td>2005</td>
<td>n.51</td>
<td>Tax system and tax reforms in India</td>
<td>Luigi Bernardi and Angela Fraschini</td>
</tr>
<tr>
<td>2005</td>
<td>n.50</td>
<td>Optimal provision of public goods under imperfect intergovernmental competition</td>
<td>Ferruccio Ponzano</td>
</tr>
<tr>
<td>2005</td>
<td>n.49</td>
<td>Proprietà intellettuale e mercati: il ruolo della tecnologia e conseguenze microeconomiche</td>
<td>Franco Amisano and Alberto Cassone</td>
</tr>
<tr>
<td>2005</td>
<td>n.48</td>
<td>Cantor Type Attractors in Stochastic Growth Models</td>
<td>Tapan Mitra and Fabio Privileggi</td>
</tr>
<tr>
<td>2005</td>
<td>n.47</td>
<td>Voting on the Electoral System: an Experiment</td>
<td>Guido Ortona</td>
</tr>
<tr>
<td>2004</td>
<td>n.46</td>
<td>Transfers and altruistic Punishments in Third Party Punishment Game Experiments</td>
<td>Stefania Ottone</td>
</tr>
<tr>
<td>2004</td>
<td>n.45</td>
<td>Do business incentives increase employment in declining areas? Mean impacts versus impacts by degrees of economic distress.</td>
<td>Daniele Bondonio</td>
</tr>
<tr>
<td>2004</td>
<td>n.44**</td>
<td>La valorizzazione del Museo provinciale della battaglia di Marengo: un parere di diritto pubblico</td>
<td>Joerg Luther</td>
</tr>
<tr>
<td>2004</td>
<td>n.43</td>
<td>The allocation of the income tax among different levels of government: a theoretical solution</td>
<td>Ferruccio Ponzano</td>
</tr>
<tr>
<td>2004</td>
<td>n.42</td>
<td>Intergovernmental equalization grants: some fundamental principles</td>
<td>Albert Breton and Angela Fraschini</td>
</tr>
<tr>
<td>2004</td>
<td>n.41</td>
<td>Rational Addiction to Cinema? A Dynamic Panel Analisis of European Countries</td>
<td>Andrea Sisto, Roberto Zanola</td>
</tr>
<tr>
<td>Year</td>
<td>Number</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>2004</td>
<td>40**</td>
<td>Francesco Ingravalle</td>
<td>Stato, große Politik ed Europa nel pensiero politico di F. W. Nietzsche</td>
</tr>
<tr>
<td>2003</td>
<td>39</td>
<td>Marie Edith Bissey, Claudia Canegallo, Guido Ortona and Francesco Scacciati</td>
<td>Competition vs. cooperation. An experimental inquiry</td>
</tr>
<tr>
<td>2003</td>
<td>38</td>
<td>Marie-Edith Bissey, Mauro Carini, Guido Ortona</td>
<td>ALEX3: a simulation program to compare electoral systems</td>
</tr>
<tr>
<td>2003</td>
<td>37*</td>
<td>Cinzia Di Novi</td>
<td>Regolazione dei prezzi o razionamento: l’efficacia dei due sistemi di allocazione nella fornitura di risorse scarse a coloro che ne hanno maggiore necessità</td>
</tr>
<tr>
<td>2003</td>
<td>35*</td>
<td>Marcello Montefiori</td>
<td>Hotelling competition on quality in the health care market.</td>
</tr>
<tr>
<td>2002</td>
<td>33*</td>
<td>Mario Ferrero</td>
<td>Radicalization as a reaction to failure: an economic model of islamic extremism</td>
</tr>
<tr>
<td>2002</td>
<td>32*</td>
<td>Guido Ortona</td>
<td>Choosing the electoral system – why not simply the best one?</td>
</tr>
<tr>
<td>2002</td>
<td>31**</td>
<td>Silvano Belligni, Francesco Ingravalle, Guido Ortona, Pasquale Pasquino, Michel Senellart</td>
<td>Trasformazioni della politica. Contributi al seminario di Teoria politica</td>
</tr>
<tr>
<td>2002</td>
<td>30*</td>
<td>Franco Amisano</td>
<td>La corruzione amministrativa in una burocrazia di tipo concorrenziale: modelli di analisi economica.</td>
</tr>
<tr>
<td>2002</td>
<td>29*</td>
<td>Marcello Montefiori</td>
<td>Libertà di scelta e contratti prospettici: l’asimmetria informativa nel mercato delle cure sanitarie ospedaliere</td>
</tr>
<tr>
<td>2002</td>
<td>28*</td>
<td>Daniele Bondonio</td>
<td>Evaluating the Employment Impact of Business Incentive Programs in EU Disadvantaged Areas. A case from Northern Italy</td>
</tr>
<tr>
<td>2002</td>
<td>27**</td>
<td>Corrado Malandrino</td>
<td>Oltre il compromesso del Lussemburgo verso l’Europa federale. Walter Hallstein e la crisi della “sedia vuota” (1965-66)</td>
</tr>
<tr>
<td>2002</td>
<td>26**</td>
<td>Guido Franzinetti</td>
<td>Le Elezioni Galiziane al Reichsrat di Vienna, 1907-1911</td>
</tr>
<tr>
<td>2002</td>
<td>25*</td>
<td>Marie-Edith Bissey and Guido Ortona</td>
<td>A simulative frame to study the integration of defectors in a cooperative setting</td>
</tr>
<tr>
<td>2001</td>
<td>24*</td>
<td>Ferruccio Ponzano</td>
<td>Efficiency wages and endogenous supervision technology</td>
</tr>
<tr>
<td>2001</td>
<td>23*</td>
<td>Alberto Cassone and Carla Marchese</td>
<td>Should the death tax die? And should it leave an inheritance?</td>
</tr>
<tr>
<td>2001</td>
<td>22*</td>
<td>Carla Marchese and Fabio Privileggi</td>
<td>Who participates in tax amnesties?</td>
</tr>
</tbody>
</table>
Self-selection of risk-averse taxpayers

2001 n. 21* Claudia Canegallo, *Una valutazione delle carriere dei giovani lavoratori atipici: la fedeltà aziendale premia?*

2001 n. 20* Stefania Ottone, *L'altruismo: atteggiamento irrazionale, strategia vincente o amore per il prossimo?*

2001 n. 19* Stefania Ravazzi, *La lettura contemporanea del cosiddetto dibattito fra Hobbes e Hume*

2001 n. 18* Alberto Cassone e Carla Marchese, *Einaudi e i servizi pubblici, ovvero come contrastare i monopolisti predoni e la burocrazia corrotta*

2000 n. 16* Guido Ortona, *On the Xenophobia of non-discriminated Ethnic Minorities*

2000 n. 15* Marilena Locatelli-Biey and Roberto Zanola, *The Market for Sculptures: An Adjacent Year Regression Index*

2000 n. 14* Daniele Bondonio, *Metodi per la valutazione degli aiuti alle imprese con specifico target territoriale*

2000 n. 13* Roberto Zanola, *Public goods versus publicly provided private goods in a two-class economy*

2000 n. 11** Silvano Belligni, *Magistrati e politici nella crisi italiana. Democrazia dei guardiani e neopopulismo*

1999 n. 9* Mario Ferrero, *A model of the political enterprise*

1999 n. 8* Claudia Canegallo, *Funzionamento del mercato del lavoro in presenza di informazione asimmetrica*

<table>
<thead>
<tr>
<th>Year</th>
<th>Issue</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>n. 6*</td>
<td>Carla Marchese and Fabio Privileggi</td>
<td>Taxpayers Attitudes Towards Risk and Amnesty Participation: Economic Analysis and Evidence for the Italian Case.</td>
</tr>
<tr>
<td>1999</td>
<td>n. 5*</td>
<td>Luigi Montrucchio and Fabio Privileggi</td>
<td>On Fragility of Bubbles in Equilibrium Asset Pricing Models of Lucas-Type</td>
</tr>
<tr>
<td>1999</td>
<td>n. 4**</td>
<td>Guido Ortona</td>
<td>A weighted-voting electoral system that performs quite well.</td>
</tr>
<tr>
<td>1999</td>
<td>n. 3*</td>
<td>Mario Poma</td>
<td>Benefici economici e ambientali dei diritti di inquinamento: il caso della riduzione dell’acido cromico dai reflui industriali.</td>
</tr>
<tr>
<td>1999</td>
<td>n. 2*</td>
<td>Guido Ortona</td>
<td>Una politica di emergenza contro la disoccupazione semplice, efficace equasi efficiente.</td>
</tr>
<tr>
<td>1998</td>
<td>n. 1*</td>
<td>Fabio Privileggi, Carla Marchese and Alberto Cassone</td>
<td>Risk Attitudes and the Shift of Liability from the Principal to the Agent</td>
</tr>
</tbody>
</table>
The Department develops and encourages research in fields such as:

- theory of individual and collective choice;
- economic approaches to political systems;
- theory of public policy;
- public policy analysis (with reference to environment, health care, work, family, culture, etc.);
- experiments in economics and the social sciences;
- quantitative methods applied to economics and the social sciences;
- game theory;
- studies on social attitudes and preferences;
- political philosophy and political theory;
- history of political thought.

The Department has regular members and off-site collaborators from other private or public organizations.
Instructions to Authors

Please ensure that the final version of your manuscript conforms to the requirements listed below:

The manuscript should be typewritten single-faced and double-spaced with wide margins.

Include an abstract of no more than 100 words.

Classify your article according to the Journal of Economic Literature classification system.

Keep footnotes to a minimum and number them consecutively throughout the manuscript with superscript Arabic numerals. Acknowledgements and information on grants received can be given in a first footnote (indicated by an asterisk, not included in the consecutive numbering).

Ensure that references to publications appearing in the text are given as follows:

COASE (1992a; 1992b, ch. 4) has also criticized this bias....

and

“...the market has an even more shadowy role than the firm” (COASE 1988, 7).

List the complete references alphabetically as follows:

Periodicals:

Monographs:

Contributions to collective works:

Working papers: