foto

Fabio Privileggi

Membro Associato a POLIS
Ufficio 307
Via Cavour 84, 15121 Alessandria

email: fabio.privileggi@unito.it
Fax: 0131 283 704





Profile Research Publications and conferences Office Hours Links
- Journal articles - Book chapters and conference proceedings - Working papers - Working papers POLIS - Conference proceedings articles - Monographs - Other works - Books (scientific textbooks) - Working papers IEL -


PRIVILEGGI Fabio, Tapan MITRA and Luigi MONTRUCCHIO (2003), "The Nature of the Steady State in Models of Optimal Growth Under Uncertainty", Economic Theory, 23 (1), 39-72.
J.E.L codes: C61, O41
Keywords: Stochastic optimal growth, Iterated Function System, Singular and absolutely continuous invariant distribution

Abstract
We study a one-sector stochastic optimal growth model with a representative agent. Utility is logarithmic and the production function is of the Cobb-Douglas form with capital exponent α. Production is affected by a multiplicative shock taking one of two values with positive probabilities p and 1 − p. It is well known that for this economy, optimal paths converge to a unique steady state, which is an invariant distribution. We are concerned with properties of this distribution. By using the theory of Iterated Function Systems, we are able to characterize such a distribution in terms of singularity versus absolute continuity as parameters α and p change. We establish mutual singularity of the invariant distributions as p varies between 0 and 1 whenever α < 1/2. More delicate is the case α > 1/2. Singularity with respect to Lebesgue measure also appears for values α, p such that α < pp (1 − p)(1−p). For α > pp (1 − p)(1−p) and 1/3 ≤ p ≤ 2/3, Peres and Solomyak (1998) have shown that the distribution is a.e. absolutely continuous. Characterization of the invariant distribution in the remaining cases is still an open question. The entire analysis is summarized through a bifurcation diagram, drawn in terms of pairs (α, p).

link to journal article
Research Project: Modelli stocastici con stati stazionari frattalici More...

Rankings